
Foundations and TrendsR© in
Stochastic Systems
Vol. 1, No. 4 (2006) 259–341
c© 2008 K. Muthuraman and S. Kumar
DOI: 10.1561/0900000006

Solving Free-boundary Problems with
Applications in Finance

Kumar Muthuraman1 and Sunil Kumar2

1 McCombs School of Business, University of Texas at Austin, 1 University
Sta B6000, Austin, TX 78712, USA, kumar@mail.utexas.edu

2 Graduate School of Business, Stanford University, 518 Memorial Way,
Stanford, CA 94305, USA, skumar@stanford.edu

Abstract

Stochastic control problems in which there are no bounds on the rate
of control reduce to so-called free-boundary problems in partial differ-
ential equations (PDEs). In a free-boundary problem the solution of
the PDE and the domain over which the PDE must be solved need
to be determined simultaneously. Examples of such stochastic control
problems are singular control, optimal stopping, and impulse control
problems. Application areas of these problems are diverse and include
finance, economics, queuing, healthcare, and public policy. In most
cases, the free-boundary problem needs to be solved numerically.

In this survey, we present a recent computational method that solves
these free-boundary problems. The method finds the free-boundary by
solving a sequence of fixed-boundary problems. These fixed-boundary
problems are relatively easy to solve numerically. We summarize and
unify recent results on this moving boundary method, illustrating its

application on a set of classical problems, of increasing difficulty, in
finance. This survey is intended for those are primarily interested in
computing numerical solutions to these problems. To this end, we
include actual Matlab code for one of the problems studied, namely,
American option pricing.

1
Introduction

Singular stochastic control problems are those problems in which con-
trol effort can effect instantaneous displacement in state. A wide variety
of problems can be modeled as singular stochastic control problems.
A representative list of applications include economics [16], portfolio
optimization in finance [15], dynamic control of queueing networks [22],
revenue management [11], and environmental clean-up issues in public
policy [28].

Despite their wide applicability, singular control problems are not
analytically tractable except in very special cases. Therefore, one is
forced to solve these problems numerically. Based on the applica-
tion, various numerical methods have been proposed for solving such
problems.

Our goal in this survey is to describe a general yet efficient numer-
ical method for solving such problems. As a consequence we rely quite
heavily on our own past work in this area, and borrow heavily from
our papers. Our goal is to provide a unified treatment of this method
emphasizing application in Finance.

Our method makes use of the special structure of these problems,
namely, that optimal policies are characterized by so-called regions of

261

262 Introduction

inaction. So we reduce the problem of finding the optimal policies to
searching for the right region of inaction. This is still a difficult prob-
lem because there is no explicit characterization of the optimal region.
Rather it is implicitly specified by the solution of a partial differen-
tial equation, whose domain it is. Thus, we are faced with a so-called
free-boundary problem where the solution of a PDE and the domain
of which it must be solved need to be simultaneously determined. Our
method solves these free-boundary problems by reducing them into a
sequence of fixed-boundary problems which are relatively easy to solve
numerically. The key to our method is a boundary update procedure
that allows us to construct the next fixed-boundary problem from the
solution of the previous one.

A valuable by-product of our method is that it is capable of solving
other stochastic control problems that can be cast as free-boundary
problems but are not singular control problems per se. An important
class of problems that fall in this category are optimal stopping prob-
lems. A very important example of an optimal stopping problem is
the American option pricing problem, and our method is applicable to
these problems as well, as we will discuss in a later section. In the same
vein, our method is also applicable to impulse control problems [18],
but we do not discuss these problems in this survey.

Rather than describe the method in vague words, we provide a
simple, concrete illustration using a one-dimensional singular control
problem. Restricting attention initially to one-dimensional problems
allows us to achieve two objectives. We can provide a description of
the procedure that is easier to comprehend, and we illustrate the kind
of theoretical guarantees on the behavior of the procedure that can be
obtained.

1.1 Motivation: Controlled Brownian Motion

Consider the problem of using two non-negative, nondecreasing, RCLL
processes to control a given continuous path w(·) as

x(t) = x + µt + σw(t) + L(t) − U(t), t ≥ 0, (1.1)

where µ and σ > 0 are constants, and the initial state x ∈ [0,1].
Suppose that we needed x(t) ∈ [0,1] for all t, and furthermore, we were

1.1 Motivation: Controlled Brownian Motion 263

interested in maintaining x(t) as close to x̄ in the sense of minimizing∫∞
0 e−λth(x(t))dt, where λ > 0 is a discount rate, and h(y) = (y − x̄)2,

where x̄ ∈ (0,1). For now, we impose no probabilistic structure on the
problem. This problem is trivially solved. If x �= x̄ we simply make an
initial jump using either L or R to move x(0+) to x̄ and maintain
x(t) = x̄ for all t > 0 using L and U . Note that we may have jumps in
L or U even though w is continuous. In particular, there are no rate
constraints on L and U . Hence the name singular control.

Now consider costs of control as well. Suppose, we have cost rates
c > 0 and r > 0 such that the overall cost of using controls L and U

is
∫∞
0 e−λth(x(t))dt +

∫∞
0 e−λtcdL(t) +

∫∞
0 e−λtrdU(t), where the last

two terms are interpreted as Reimann–Steiljes integrals. Now the choice
of controls is no longer obvious. Attempting to make h(x(t)) small
comes at the price of incurring control costs. If the path w is not of
bounded variation, then costs of control incurred by attempting to
maintain x(t) ≡ x̄ is prohibitive. So in order to trade-off the holding
cost h against control costs, one pick controls that do nothing as long
as x(t) is close to x̄ but intervene only when it has deviated sufficiently,
i.e., it has hit the boundary of an interval around x̄. It is not hard to
see that the same interval cannot be appropriate for all paths. So we
can no longer hope for path-wise solutions. To solve this problem we
need to impose additional probabilistic structure on it.

Let (Ω,F ,P) be a probability space and {Ft, t ∈ R+} be a right
continuous filtration on this space and let w be a standard (R-valued)
Brownian motion with respect to this filtration. Let L and U be RCLL,
non-negative, nondecreasing and adapted to Ft. Now suppose that we
are again interested in the controlled process x(·) specified by (1.1),
and in minimizing the expected infinite horizon discounted cost (also
called a value function) among all admissible policies L and U .

J(x,L,U) = Ex

[∫ ∞

0
e−λth(x(t))dt

+
∫ ∞

0
e−λtcdL(t) +

∫ ∞

0
e−λtrdU(t)

]
, (1.2)

For this problem to make sense we restrict attention to only those con-
trols for which Ex

[∫∞
0 e−λtdL(t)

]
< ∞ and Ex

[∫∞
0 e−λtdU(t)

]
< ∞.

264 Introduction

As before we restrict attention to those policies that maintain x(t) ∈
B0 ≡ [0,1] for all t > 0 and to initial states x ∈ B0.

The first thing we do is to reduce this singular, stochastic control
problem into a problem in differential equations. The following result
is fairly standard, and follows from an application of Itô’s formula. See,
for example, [30].

Lemma 1.1. If we can find a twice continuously differentiable func-
tion f∗: B0 → R such that f∗(x) = J(x,L,U) for all x ∈ B0 for some
admissible (L,U), and satisfies

min
(
σ2

2
f∗

xx(x) + bf∗
x(x) − λf∗(x) + h(x),f∗

x(x) + c,−f∗
x(x) + r

)
= 0

(1.3)
in B0, then the (L,U) must be optimal. (Here and elsewhere in this
volume fx denotes the derivative of f and fxx the second derivative.)

Although this theorem has allowed us to translate the problem to
one in ODE’s it has not yet given us a clue as to its solution. Now sup-
pose we can find a function f in the following class F . Each function
f ∈ F is specified by an interval B = [bl, bu] ⊂ B0, is continuously dif-
ferentiable in B0, twice continuously differentiable in the interior of B,
and satisfies the following ordinary differential equation (ODE) in B.

1
2
σ2fxx(x) + bfx(x) − λf(x) + h(x) = 0, (1.4)

fx(bl) = −c, and (1.5)

fx(bu) = r. (1.6)

Furthermore, the function is defined in B0 − B by the linear extension

f(x) = f(bl) + c(bl − x) for b0l ≤ x < bl and (1.7)

f(x) = f(bu) + r(x − bu) for b0u ≥ x > bu. (1.8)

Note that every f ∈ F is almost a candidate for f∗. The differentiator
among these functions f ∈ F , that is, among the intervals B is the
need for f∗ to be twice continuously differentiable over B0 and not

1.1 Motivation: Controlled Brownian Motion 265

just B. This means that the optimal choice of interval B∗ will have to
be made so as to ensure smooth pasting [4] of the solution of the ODE
inside B∗ and the linear extension outside B∗. Thus we are faced with
the problem of finding the solution of an ODE and the domain over
which it must be solved simultaneously, resulting in the so-called free-
boundary problem. The second issue that we need to tackle is whether
f∗ is a value function under some admissible controls.

Before we go into a procedure for finding B∗, we first note the
following connection between functions in F and the so-called regulated
Brownian motions, which provides us with an interpretation of f ∈ F .
Consider policies that maintain x in B with the minimum amount of
pushing required to do so. That is, for any interval B ⊂ B0, let LB

and UB be the (unique) non-negative, nondecreasing, RCLL processes
adapted to Ft such that

x(t) ∈ B for all t > 0∫ t

0
(bl − x(s))+dLB(s) =

∫ t

0
(x(s) − bu)+dUB(s) = 0 for each t > 0

UB(0+) = (x(0) − bu)+ and LB(0+) = (bl − x(0))+.
(1.9)

The x that results from the use of such LB and UB is called a reg-
ulated Brownian motion or two-sided regulator applied to Brownian
motion. The following result, which is also standard, gives the connec-
tion between regulated Brownian motions and f ∈ F .

Lemma 1.2. Consider a B ⊆ B0 and the f ∈ F corresponding to B

that satisfies (1.4–1.6). Then

f = Ex

[∫ ∞

0
e−λth(x(t))dt+

∫ ∞

0
e−λtc · dLB(t)+

∫ ∞

0
e−λtr · dUB(t)

]
,

where LB and UB are the unique admissible controls that satisfy (1.9).

So we can search for an f∗ by searching for a B∗. Once we find a B∗

such that the solution to (1.4–1.6) is twice continuously differentiable
on B0, we are done because the optimal policy is specified by the reg-
ulator (LB∗ ,UB∗). An interpretation that follows from the definition of

266 Introduction

regulated Brownian motion is that B∗ can be though of as the region
of inaction. As long as x is inside B∗ no controls are applied. Controls
are only applied on the boundary of B∗. Thus our search reduces to the
search for a region of inaction. We now describe an iterative procedure
for finding B∗.

We begin the iterative procedure with B0 as the initial choice for
the region of inaction. We solve the set of Equations (1.4)–(1.6) to
find the value function corresponding to a regulated Brownian motion
whose region of inaction is B0. Then we iterate as follows to obtain
successive regions of inaction B1,B2, . . . and the corresponding value
functions f1,f2, The key to getting this procedure to work to find
an update rule that allows to efficiently determine Bk+1 given Bk and
will converge to B∗. With that in mind, we impose two desiderata on
the update procedure.

D1 (The Superset Condition). We want the regions of inac-
tion to be monotone decreasing; we need Bk+1 ⊆ Bk. As is
evident from (1.4)–(1.8), we only obtain “real” informa-
tion about fk inside Bk. So we have no way of telling how
far to back-out if we did not have a monotone sequence of
regions and needed to back out. So the superset condition
is a requirement for efficient search.

D2 (Policy Improvement). We would like that fk+1(x) ≤
fk(x) for all x ∈ B0. That is, the policy obtained in the
next iteration is an improvement on the current policy. This
ensures that the fk will converge.

Upfront, it is not clear that a procedure that meets both D1 and D2
exists. In what follows we construct such a procedure.

The crucial step to constructing the procedure is deciding on
the update rule. Given Bk and fk, define the right and left second
derivatives as fk+

xx (x) := limδ↓0(fk
x (x + δ) − fk

x (x))/δ and fk−
xx (x) :=

limδ↓0(fk
x (x) − fk

x (x − δ))/δ. At x = bl
k, fk+

xixi
(x) need not equal

fk−
xixi

(x). (Note that fk−
xixi

(x) = 0 because of our construction.) Consider
the case when fk+

xx (blk) < 0. The situation is as shown in Figure 1.1.
In this case updating the boundary inwards, i.e., setting bl

k+1 >

bl
k helps us achieve D1 of course. But it also helps us achieve D2.

1.1 Motivation: Controlled Brownian Motion 267

xxf < 0

xxf = 0

OUTSIDE

VALUE FUNCTION
INSIDE

VALUE FUNCTION

x

NEW BOUNDARY

OLD BOUNDARY

x
VIOLATED

f + c = 0

f < −c

Fig. 1.1 Illustrating the smooth paste update procedure.

To see this, consider a modification �Bk of the control LBk . Under the
control �Bk , if the initial state x is such that x < bl

k, it is translated
instantaneously, not to blk as by LBk , but to a point x′ in the immediate
vicinity of blk in the interior of Bk. Thereafter, LBk is mimicked by �Bk .
Then

J(�Bk) − J(LBk) =
∫ x′

bl
k
(fk

x + c)dx < 0.

So �Bk is an improved policy, and by repeating this argument, we sus-
pect that a policy that maintains x(t) in a smaller interval than Bk

will be an improvement. (All of this will be formalized shortly.)
Although the heuristic argument above tells us that we should move

inwards, it does not tell us by how much. Since we are striving to find
a function in C2(B0), a natural candidate to update the boundary
inwards is the point where fk

xx(x) = 0. That is, we move the boundary
to a point where, if the resulting region of inaction was indeed the fixed
point of the iterations, then the function inside the region (obtained
by solving (1.4–1.6)) and its linear extension outside the region would

268 Introduction

be smoothly pasted, a requirement for converging to B∗ as discussed
earlier. Therefore, we choose the local minimizer of fk

x nearest blk as
the updated blk+1. That is,

bl
k+1 = min{x∗ ≥ bkl |x∗ is a local minimizer of fk

x}, or equivalently

bl
k+1 = min

{
x∗ ≥ bkl |∃ ε > 0 s.t. fk

x (x∗) = min
−ε≤δ≤ε

fk
x (x∗ + δ)

}
.

(1.10)

Arguing similarly at bku, if fk−
xx < 0 the natural candidate for the

update is

bu
k+1 = max{x∗ ≤ bku|x∗ is a local maximizer of fk

x}, or equivalently

bu
k+1 = max

{
x∗ ≤ bku|∃ ε > 0 s.t. fk

x (x∗) = max
−ε≤δ≤ε

fk
x (x∗ + δ)

}
.

(1.11)

For completeness we need to consider the case when fk+
xx (blk) > 0.

If f0+
xx (0) > 0 then we suspect that the interval B0 = [0,1] is not big

enough. But our requirement that x(t) ∈ [0,1] implies that we must
simply retain b1l = 0. The same holds when f0−

xx (1) > 0, we must retain
b1u = 1. Now if these two conditions are ruled out by assumption (by
assuming that c + r is sufficiently small, for example) then our update
procedure guarantees that fk+

xx (blk) < 0 implies f (k+1)+
xx (blk) < 0. That

is, if the procedure works at the first step, it will work at every
subsequent step. We illustrate this first via a numerical example
taken from [30]. We then quote a result from [30] that the pro-
cedure is well-defined and that it converges. The numerical exam-
ple uses the parameter choices λ = 0.01,σ2 = 2, b = 1, x̄ = 0.6, c = 0.02,
r = 0.01. Figure 1.2 plots fk(x),fk

x (x),fk
xx(x) for k = 0,1,2.

We start with the initial region of inaction B0 = [0,1]. We then
solve the resulting ODE (1.4) in [0,1] with the boundary conditions
f0

x(0) = −c,f0
x(1) = r. Although the resulting expressions are messy,

this ODE can be solved analytically. The top set of plots in Figure 1.2
show the resulting f0 and its first and second derivatives, f0

x and f0
xx.

As can be seen from the plots, f0
x(x) < −c for all x < 0.52. Thus, (1.3)

is violated and therefore we need to move the lower barrier from 0.

1.1 Motivation: Controlled Brownian Motion 269

0 0.5 1
1.06

1.08

1.1

0 0.5 1
−0.06

−0.04

−0.02

0

0.02

0 0.5 1
−0.5

0

0.5

0 0.5 1
0.79

0.8

0.81

0 0.5 1
−0.04

−0.02

0

0.02

0 0.5 1
−0.1

−0.05

0

0.05

0.1

0 0.5 1

0.76

0.77

0 0.5 1
−0.03

−0.02

−0.01

0

0.01

0 0.5 1
−0.05

0

0.05

0.1

fk(x) fk
x
(x) f k

xx
(x)

k=0

k=1

k=2

Fig. 1.2 One-dimensional example.

We move the lower boundary to b1l such that f0
x(b1l) is the minimum

of f0
x . Of course, f0

xx(b1l) = 0. Similarly, we move the right boundary to
b1u such that f0

x(b1u) is the maximum of f0
x . Once again we analytically

solve ODE (1.4) for f1 in [b1l , b
1
u] with the boundary conditions f1

x(b1l) =
−c,f0

x(b1u) = r. The linear extension gives f1(x) = f1(b1l) + c(b1l − x)
for x ∈ [b0l , b

1
l] and f1(x) = f1(b1u) + r(x − b1u) for x ∈ [b1u, b

0
u]. The sec-

ond row of plots in Figure 1.2 show the resulting f1, f1
x , and f1

xx. We
still have regions where f1

x(x) < −c and f1
x(x) > r. So we repeat the

procedure, arriving at the plots shown in the third row in Figure 1.2.
Now we note that f2

x(x) ≥ −c and f2
x(x) ≤ r for all x ∈ [0,1] and that

f2
xx(b2l) = f2

xx(b2u) = 0 upto the resolution of our code, and we terminate
the process.

We now provide theoretical justification for the procedure in
Proposition 1.3 below, taken from [30].

270 Introduction

Proposition 1.3. If Bk ≡ [bkl , b
k
u] is such that fk+

xx (bkl) < 0 and
fk−

xx (bku) < 0 for a given k, then

(1) bk+1
l < bk+1

u ,
(2) Bk+1 ⊂ Bk, i.e., bk+1

l > bkl and bk+1
u < bku,

(3) fk+1(x) < fk(x), for all x ∈ B0, and
(4) f (k+1)+

xx (bk+1
l) < 0 and f (k+1)−

xx (bk+1
u) < 0.

Therefore, if B0 ≡ [b0l , b
0
u] is such that f0+

xx (b0l) < 0 and f0−
xx (b0u) < 0,

(5) bkl → b∗l and bku → b∗u, as k → ∞, where b∗l > bkl and b∗u < bku
for any k ≥ 0,

(6) fk → f∗ uniformly on B0 as k → ∞,
(7) f∗ ∈ C2(B0) satisfies Γf∗ − λf∗ + h = 0 in [b∗l , b

∗
u], with

f∗
xx(b∗l) = 0 and f∗

xx(b∗u) = 0,
(8) f∗ solves (1.3).

Proposition 1.3 establishes several properties of the algorithm.
First, it establishes that the update procedure is well-defined, and
the region of inactions obtained in each iteration is non-empty. Sec-
ond, it establishes that update improves the value function D2, and
that the superset condition D1 is satisfied. Further, it establishes
convergence of the regions of inaction as well as the value func-
tion. Finally, it proves that the value function to which the proce-
dure converges is indeed the optimal value function. Moreover, the
converged value function can be interpreted as the value function
under the policy that instantaneously translates the initial state to
[b∗l , b

∗
u] and maintains it thereafter in this interval using the two-sided

regulator.

1.2 The General Method

The example in the previous section is quite restrictive. The problem
is one dimensional and the stochastic process being controlled is Brow-
nian motion. As a consequence, both identifying the update rule and

1.2 The General Method 271

verifying its properties is quite easy. Yet, it suffices to provide us with
the outline of the general procedure, enumerated below.

(1) Write out the stochastic control problem, as in (1.1), (1.2). In
the sections that follow, the control problems we study will
be different from the one studied here, but they either will
involve singular controls or will be closely related problems
such as optimal stopping problems.

(2) Translate the stochastic control problem into a problem in
PDEs as in Lemma 1.1. This PDE is commonly called the
Hamilton–Jacobi–Bellman (HJB) equation.

(3) Look for solutions to the HJB equation that are specified
by free-boundary problems as in (1.4)–(1.8). These corre-
spond to policies that are specified by regions of inaction as
in Lemma 1.2. A key issue that arises in higher dimensions
is whether classical (smooth) solutions exist for these free-
boundary problems. That is, can we find an f∗ ∈ F which is
smooth across the boundary of B∗? In some cases, we will
quote results that establish existence of smooth solutions. In
other cases, we will simply assume existence and proceed.
A related issue here is the existence of solutions to the so-
called Skorohod problem as in (1.9), which we also simply
assume.

(4) We will use an iterative procedure that solves the free-
boundary problem by solving a sequence of fixed-boundary
problems over domains B0,B1, The key to constructing
this procedure is the way to update the boundaries ∂Bk. In
every case that we consider, we will insist on D1 and D2 for
the reasons mentioned.

(5) At each step in the procedure we will need to solve a PDE
over Bk analogous to (1.4) with boundary conditions analo-
gous to (1.5)–(1.6). We need to take into account the direc-
tion in which control is exercised in higher dimensions and
so the boundary conditions can be nonstandard. The way
we set up our method this PDE is a linear elliptic PDE and
thus amenable to numerical solution. Although the user is

272 Introduction

free to choose the numerical method used to solve this PDE,
the ability to handle nonstandard boundary conditions and
arbitrary domains Bk suggests the use of Finite Element
Methods, which we describe.

(6) In all the cases, we will use the idea of smooth pasting to
come up with our update procedure, updating each point on
∂Bk by moving along the direction of control to the point
where smooth pasting would hold if the value function did
not change, just as in (1.10)–(1.11).

(7) Finally, we need to provide a justification of the method as
in Proposition 1.3. In two of the problems we study, namely
portfolio optimization with one stock in Section 2 and Amer-
ican option pricing in Section 3, we quote results that provide
such guarantees. For the higher dimensional portfolio opti-
mization problems, we offer no guarantees beyond extensive
numerical studies.

1.3 Structure and Intended Audience

The intended reader of this survey is one who is conversant with the
basic formulations in Mathematical Finance. We provide no modeling
justification for the control problems that we study. We assume that
the reader knows why these problems are worth solving numerically.
We also assume that the reader has at least a passing familiarity with
PDE approach to solving these control problems. While we do cite work
that carries out the translation from the stochastic control problem to
the free-boundary problem in each of our settings, we do not provide
any details of this translation. To summarize, this volume is intended
for the reader who knows how to set up a stochastic control problem
as a free-boundary problem, and wants to find an efficient numerical
procedure for its solution. Although the applications we study are in
Finance, the actual domain of applicability of our method is much
larger. Finally, this survey is intended for those who will actually com-
pute solutions, rather than prove theorems about the control problems
or computational schemes. So the level of rigor is not as high as one
would find in [20, 27].

1.3 Structure and Intended Audience 273

One of the shortcomings of this volume is that no general procedure
is outlined. The primary reason for this is that it is nearly impossible to
justify the method, let alone guarantee its performance, in a sufficiently
general set-up that encompasses all the applications we cover. So we
choose a case-by-case approach. The procedure is carefully constructed
and justified in each of the settings we consider. And in two of these
settings performance guarantees are provided. It is the authors’ belief
that it is easier for the reader to tailor the procedure for an application
of interest, and to justify it using the special structure of the problem
at hand, by understanding how the moving-boundary method works in
a variety of settings.

Finally, we do provide actual MATLAB code for one of the settings
we consider, the pricing of American options. This is intended to help
the potential user get oriented with implementation of our method.

2
Portfolio Optimization with One Stock

and Transaction Costs

In this section, we consider the problem of computing the optimal
investment and consumption strategy of an investor who trades a single
risky asset and incurs proportional transaction costs. Our objective is
to maximize the investors expected discounted utility of consumption
over an infinite horizon. This problem is of interest in its own right,
of course. But for us, the problem is particularly interesting because it
has both singular controls, corresponding to transactions, and classical
controls, corresponding to consumption.

The investor manages a portfolio consisting of a risk-free asset,
hereafter called the bank, and a risky asset, called a stock. The price
process of stock is modeled as a geometric Brownian motion. The
investor is given an initial position and in time, can choose to either
consume money from the bank, buy stock with money in the bank, or
add money to the bank by selling stock. Transacting, that is, buying
or selling stock, incurs transaction costs proportional to the values of
the transactions themselves. The investor obtains utility by consuming
money from the bank. We take the utility function to be either the
power utility, or the log utility. The investor’s objective is to transact

274

275

and consume so as to maximize the expected net present value of utility.
The investor is allowed to trade in continuous time and in infinitesimal
quantities.

The model described above, without transaction costs was the
focus of Merton’s seminal paper [39]. The optimal policy proposed by
Merton continuously transacts to hold fixed fractions of total wealth in
various stocks and consumes another fixed fraction of wealth. Merton’s
policy requires that an infinite number of transactions be made in any
finite time interval. This suggests that in the presence of transaction
costs, Merton’s policy would no longer be optimal. With transaction
costs, the investor would want to make fewer transactions. In particu-
lar, he would make transactions only if the fraction of his stock holding
is “sufficiently” far away from Merton’s optimal fraction to warrant
the transaction. Proportional transaction costs were first considered
in [36]. It was conjectured that the optimal policy would be charac-
terized by an interval of inaction, such that the optimal policy would
not transact when the fraction of wealth in stock lies in this inter-
val. When the fraction wanders outside the interval the optimal policy
would be to buy or sell just enough to push the fraction back into the
interval.

The problem with proportional transaction costs is now under-
stood to be a singular stochastic control problem [50]. The Mer-
ton problem with proportional transaction costs for the one-stock
case was solved by Davis and Norman [15]. In an exhaustive the-
oretical exposition [49] considered a relaxation of the Davis and
Norman problem and used viscosity solution techniques to provide
existence and uniqueness results and characterized the regularity of
the value function. An excellent review of literature in this area
is presented in [53]. For us, these theoretical results allow us to
reduce the problem to finding a solution to a differential equa-
tion with a free-boundary, along the lines of the previous section.
Having done so, we will move on to problems involving multiple
stocks.

Most of what follows is taken from [15] and [41]. We will use the
set-up from Davis and Norman and describe the computational method
from [41].

276 Portfolio Optimization with One Stock and Transaction Costs

2.1 Problem Formulation

Here, our market consisting of one risk-free and only one risky asset.
The risk-free investment, that is the bank, continuously pays an interest
rate r > 0. The evolution of S0(t), the value in the bank, can then be
expressed as S0(t) = S0(0)ert or,

dS0(t) = r S0(t)dt. (2.1)

The risky investment, that is the stock, has a mean rate of return
α > r. We take a standard Brownian motion B = {B(t) : t ≥ 0} on its
standard filtered probability space (Ω,F ,P), as our source of uncer-
tainty. Here {Ft : t ≥ 0} is a right continuous filtration of σ-algebras
that represents the information revealed by the Brownian motion.

Let S(t) denote the value in stock at time t and σ2 be the variance
of the stock returns. Then,

dS(t) = S(t)[α dt + σdB(t)]. (2.2)

The investor is given an initial position of x dollars invested in the bank
and y dollars invested in the stock. A consumption and trading policy
must be chosen to maximize the objective. Consumption c(·) can occur
only from money in the bank and only in non-negative quantities. We
assume that c(·) is adapted to Ft, that is, it is nonspeculative and that
it be integrable for any finite t, that is,

E
∫ t

0
c(s)ds < ∞ ∀t ≥ 0. (2.3)

To model the transaction controls we consider two Ft-adapted pro-
cesses L(t) and U(t), which are non-negative, nondecreasing, and right
continuous with left limits. L(t) represents the cumulative amount of
money spent from the bank to buy stock before incurring transac-
tion costs. Similarly U(t) represents the cumulative amount of money
obtained from selling stock before incurring transaction costs. Buying
and selling stock incurs proportional transaction costs. Let λl ≥ 0 and
λu ≥ 0 be the transaction cost for buying and selling stock, respectively.
We will assume that λl + λu > 0 to avoid trivialities. To be more pre-
cise, buying a unit worth of stock will cost (1 + λl) of wealth from the

2.1 Problem Formulation 277

bank and selling a unit worth of stock will result in (1 − λu) of wealth
added to the bank.

For the sake of readability in the rest of this section, unless nec-
essary, we will suppress the dependence on time t when denoting the
processes B(t),S0(t),S(t), c(t),L(t),U(t). With consumption and trans-
action, the controlled evolution of S0 and S can be described by

dS0 = (rS0 − c)dt − (1 + λl)dL + (1 − λu)dU, (2.4)

dS = S [αdt + σdB] + dL − dU. (2.5)

The initial position that the investor starts with is (x,y), that is,
S0(0−) = x and S(0−) = y.

The solvency region is defined as,

Θ = {(x,y) ∈ R2 : x + min((1 + λl)y,(1 − λu)y) ≥ 0}.

The initial portfolio (x,y) and its future evolution are restricted to lie
in Θ, which is the set of points from which the investor can conduct
transactions to move to a point of non-negative value in both assets.
A consumption-transaction policy (c,L,U) is called admissible if S0 and
S given by Equations (2.4) and (2.5) lie in Θ for all t ≥ 0, that is,

P[(S0,S) ∈ Θ for all t ≥ 0] = 1. (2.6)

Therefore, an admissible policy will ensure that bankruptcy does not
occur in finite time. We will use U to denote the set of all admissible
policies. U is clearly nonempty, since we can construct an admissible
policy (c̃, L̃, Ũ) from any policy (c,L,U) by terminating (c,L,U) at any
arbitrary time when the state is still in Θ, and moving all wealth to
the risk-free asset.

The utility that the investor obtains from consumption is given by
the utility function u(·). We will consider two common utility functions,
the log utility function and the power utility function. They are given
by

Log utility: u(c) = log(c), (2.7)

Power utility: u(c) =
cγ

γ
γ �= 0, γ < 1. (2.8)

278 Portfolio Optimization with One Stock and Transaction Costs

Here γ is the relative risk aversion coefficient that describes the
investor’s risk preference. These utility functions are very common in
modeling investor’s risk preference and belong to a class of functions
called the Hyperbolic Absolute Risk Aversion functions (HARA). Let
θ > 0 be the discounting factor. Then the investor’s objective is to
choose an admissible consumption–transaction policy (c,L,U) so as to
maximize

J(x,y,c,L,U) = Ex,y

∫ ∞

0
e−θtu(c) dt, (2.9)

subject to (2.4)–(2.6). The optimal value function V is defined as,

V (x,y) = sup
(c,L,U)∈U

J(x,y,c,L,U). (2.10)

2.2 The Value Function and the Free-boundary Problem

The stochastic control problem described in the previous section can
be transformed into a partial differential equations (PDE) problem
(see [49]). The value function V , defined in (2.10), solves

max[L̃V, S̃V, B̃V] = 0 (2.11)

where,

L̃V ≡ 1
2
σ2y2Vyy + αyVy + rxVx − θV + max

c
(u(c) − cVx) (2.12)

S̃V ≡ (1 − λu)Vx − Vy (2.13)

B̃V ≡ −(1 + λl)Vx + Vy. (2.14)

The first-order maximizing conditions for c in (2.12) are,

c =



V −1

x when u(c) = log(c),

V
1

γ−1
x when u(c) = cγ/γ.

(2.15)

In the above equations and the rest of the section we use Vx to denote
the partial differential of V with respect to x, Vy and Vyy to denote the
single and double partial differential with respect to y.

2.2 The Value Function and the Free-boundary Problem 279

It is straight forward to show that the optimal value function is con-
cave and satisfies a scaling property known as the homothetic property,
that is, for any ρ > 0,

V (ρx,ρy) =
1
θ

log(ρ) + V (x,y) when u(c) = log(c)

V (ρx,ρy) = ργV (x,y) when u(c) = cγ/γ.

Due to the concavity of the value function and the homothetic property,
it can be argued (as in [15, 49]) that Ω is a cone in R2. This implies
that the optimal transaction boundaries can be characterized by two
scalar values bu and bl such that the region of inaction (no-transaction
region) can be represented by

Ω =
{

(x,y) ∈ Θ :
x

y
∈ (bu, bl)

}
.

If x
y < bu the optimal action is to sell stock till x

y = bu and similarly if
x
y > bl the optimal action is to buy stock till x

y = bl. In the region of
inaction, it is optimal not to conduct any transaction. We will denote by
∂S and ∂B the boundaries x

y = bu and x
y = bl, respectively. Figure 2.1

illustrates the various regions.

Fig. 2.1 The solvency region.

280 Portfolio Optimization with One Stock and Transaction Costs

Furthermore, we can exploit the homothetic property and define a
function W (x),

W (x) = V (x,1)

to reduce the problem to being one-dimensional. If we can find W (x)
∀x ∈ T ≡ (λu − 1,∞) we can use the homothetic property to obtain
V (x,y), ∀(x,y) ∈ Θ. For example in the log utility case,

V (x,y) = V

(
x

y
,1
)

+
1
θ

log(y) = W

(
x

y

)
+

1
θ

log(y). (2.16)

In T , the sell region is (λu − 1, bu), the region of inaction Ω ≡ (bu, bl)
and the buy region is (bl,∞).

In terms of W (x), the HJB equation (2.11) becomes

max[LW, SW, BW] = 0 (2.17)

where,

LW ≡ β3x
2Wxx + β2xWx + β1W + β4 + max

c
(u(c) − c Wx) (2.18)

SW ≡ Wx − js (2.19)

BW ≡ −Wx + jb. (2.20)

For the log utility (u(c) = log(c)) case,

β1 = −θ (2.21)

β2 = r − α + σ2 (2.22)

β3 =
1
2
σ2 (2.23)

β4 =
1
θ

(
α − σ2

2

)
(2.24)

js =
1

θ(1 + x − λu)
(2.25)

jb =
1

θ(1 + x + λl)
(2.26)

2.2 The Value Function and the Free-boundary Problem 281

and for the power utility (u(c) = cγ

γ) case,

β1 = −1
2
σ2γ(1 − γ) + αγ − θ (2.27)

β2 = σ2(1 − γ) + r − α (2.28)

β3 =
1
2
σ2 (2.29)

β4 = 0 (2.30)

js =
γW

1 + x − λu
(2.31)

jb =
γW

1 + x + λl
. (2.32)

As in the above, Wx and Wxx represent the first and second derivatives
of W .

Of course, the free-boundary problem has not actually gone away
despite the reduction to one dimension. We are still left with calculating
bl and bu, and it is not clear how to do this from the ODE above.
To do this, we impose additional structure on the solution. We insist
that in x ∈ (bl, bu), the region of inaction, we must have LW (x) = 0,
for x ≥ bu, SW (x) = 0 and for x ≤ bl, BW (x) = 0. This restriction has
the interpretation of insisting on selling at or above bu, buying at or
below bl and not transacting otherwise. If we can find a pair (bl, bu)
and a function W (·) that satisfy this additional restriction, then it is
guaranteed to satisfy (2.17), and so we would have found an optimal
solution. The key difficulty that we need to overcome is simultaneously
figuring out both the solution of the ODE and the domain over which
it must be solved. This is what we will do.

It must not be lost on the reader that the setup in (2.17) has many
similarities with (1.3) of the previous section. The restriction here is
also very similar to that of (1.4) of the previous section. But there
is a crucial difference that must be pointed out. The operator L has
a maximization over c in it. This term arises because we need to also
compute the optimal consumption. So expanding the moving-boundary
method to handle consumption is the goal.

282 Portfolio Optimization with One Stock and Transaction Costs

2.3 The Moving-boundary Method

We will use a two-step procedure to solve (2.17). We begin by choosing
an arbitrary region of inaction, Ω0 ≡ (b0u, b

0
l). For the transaction policy

corresponding to Ω0, we calculate the optimal consumption c0 and the
associated value function W 0 in step 1. In step 2, we use a boundary
update procedure that uses Ω0 and W 0 to obtain a new region of inac-
tion Ω1 ≡ (b1u, b

1
l) and thus a new transaction policy. We will repeat the

procedure to get a sequence of regions of inaction Ω0,Ω1,Ω2, . . ., corre-
sponding consumptions c0, c1, c2, . . . and corresponding value functions
W 0,W 1,W 2, As in the previous section, the procedure transforms
the free-boundary problem (2.17) into a sequence of fixed-boundary
problems which are easier to solve numerically.

We assume that the arbitrarily chosen Ω0 is large enough so that
the optimal region of inaction, Ω∗ is a subset of Ω0. However, if Ω0 is
not large enough, Equation (2.46) will not hold, in which case one can
restart the iteration with a larger Ω0.

Step 1: Given Ωn we seek cn and Wn such that they solve

L̂W + max
c

(u(c) − cWx) = 0 in Ωn (2.33)

with boundary conditions

SW = 0 at bu and (2.34)

BW = 0 at bl. (2.35)

For notational convenience we let L̂ represent the first four terms of
L in Equation (2.18). Again, for readability we will suppress iteration
number n in the subscript when the index is obvious. The maximum is
achieved in (2.33) by c = (Wx)−1 (log utility) or c = (Wx)

1
γ−1 (power

utility). This makes (2.33) a nonlinear elliptic ODE problem. We will
use an iterative scheme to solve (2.33)–(2.35) as follows. Start with a
guess value for consumption. Given a consumption cn,m

L̂W + (u(cn,m) − cn,mWx) = 0 in Ωn (2.36)

is a linear elliptic equation and can be solved along with (2.34) and
(2.35) to obtain Wn,m, where Wn,m would be the value function given

2.3 The Moving-boundary Method 283

a transaction policy Ωn and a consumption cn,m. For now, we will not
worry about how to solve this ODE. We will postpone that to later in
this section.

Once we solve the linear problem we update our consumption with
the first-order maximization condition in Equation (2.33), that is,

cn,m+1 =

{
[Wn,m

x]−1 for log utility and

[Wn,m
x]

1
γ−1 for power utility.

(2.37)

As is evident, in the representation cn,m, n represents the iteration
index of the boundary update sequence, while m represents the index
of the consumption iteration. Figure 2.2 shows the iterative procedure.
A good guess for the initial consumption cn,0 would be the converged
consumption in iteration n − 1 and for n = 1 a good guess is the Merton
consumption fraction, that is, the optimal consumption fraction when

Fig. 2.2 Summary of iteration procedure.

284 Portfolio Optimization with One Stock and Transaction Costs

no transaction costs are present,

cn,0 =
{
cmp if n = 1

cn−1 if n > 1.
(2.38)

The Merton consumption cmp is given by,

cmp =



θ(1 + x) for log utility and

1 + x

1 − γ

[
θ − γr − γ(α − r)2

2σ2(1 − γ)

]
for power utility.

(2.39)

We terminate the iterative procedure when

sup
y∈Ωn

|cn,m+1(y) − cn,m(y)| < ε

for some tolerance parameter ε. In order to implement this procedure
we need to solve (2.36) along with (2.34) and (2.35) which constitutes a
linear elliptic ODE. Solving such linear elliptic ODEs is straightforward;
we will have to say more about this in Section 5.

Step 2: We seek the new region of inaction Ωn+1 given Ωn and Wn

calculated in step 1. First, recall from the earlier arguments that,

L̂Wn − (log(Wn
x) + 1) = 0 in Ωn (2.40)

with boundary conditions

SWn ≡ Wn
x − js = 0 and (2.41)

BWn ≡ −Wn
x + jb = 0 (2.42)

We also define an operator Q for notational convenience. The oper-
ator Q maps the set of real valued functions onto the same set. For
z : R → R,

Qz(x) =
1

β3x2

(
u(z(x)

1
γ−1) − β2xz(x)

)
. (2.43)

With γ = 0 for log utility.
If we can create a boundary update sequence that could give us

an Ωn+1 from {Ωn,Wn} such that Wn+1 >Wn and also the assurance
that the sequence of Ωs converge, then we have effectively converted the

2.3 The Moving-boundary Method 285

free-boundary problem into a converging sequence of fixed-boundary
problems. Such an update procedure is described by the following equa-
tions for bn+1

u and bn+1
l ,

bn+1
u = inf{x > bnu|(SWn)x = Qjs − QWn

x } and (2.44)

bn+1
l = sup{x < bnl |(BWn)x = Qjb − QWn

x }. (2.45)

This is equivalent to moving the boundary bnu(bnl) toward the interior
to the first point where the gradient of SWn (BWn) is equal to Qjs −
QWn

x (Qjb − QWn
x).

As in the introductory example discussed in Section 1, the boundary
update procedure shown above moves the boundaries in a monotonic
fashion. Hence the generated sequence of Ω’s are nested, that is, Ωn+1 ⊂
Ωn. This makes it obvious that for the boundary update procedure
to work we require that our initial guess, Ω0, contains the optimal
no-transactions region Ω∗. For any given Ωn and Wn, the superset
condition which assures us that Ω∗ ⊂ Ωn is,

SW 0∣∣
b0u
< SW 0∣∣

b0u+τ
and BW 0∣∣

b0l
< BW 0∣∣

b0l −τ
, (2.46)

for some δ > 0 and all τ ∈ (0, δ). The above conditions simply say that
it is necessary that the derivative of SWn (BWn) is positive (negative).
Therefore, if Ω0 and W 0 satisfy the above condition, it guarantees that
the arbitrarily chosen Ω0 was large enough. If either of the above con-
ditions fail, then it indicates that the arbitrarily chosen Ω0 was not
large enough. A restart of the procedure with a larger Ω0 is required.
A good way to choose a larger Ω0 in such cases is to move each bound-
ary half way between the old position and the boundary of the solvency
region and check (2.46) again. In the next section we will show that the
movement of boundaries dictated by (2.44) and (2.45) is well defined,
provided (2.46) is satisfied.

For an arbitrary Ωn, consider the Wn that is the solution to Equa-
tions (2.40)–(2.42). We would expect Wn to violate Equation (2.17).
Similar to the introductory example in Section 1, if the superset condi-
tion (2.46) holds, then the violation of equation will be in the interior
of Ωn. Moving each boundary to any point in the violation region that
is adjacent is bound to yield policy improvement. However, a consid-
eration for where we wish to move is the desire to obtain a Ωn+1 that

286 Portfolio Optimization with One Stock and Transaction Costs

satisfies the superset condition as well. Such an Ωn+1 is provided by
the update conditions (2.44) and (2.45).

The stopping criterion for terminating the boundary iterations can
be set in two ways — either in terms of the convergence of the region
of inaction, that is,

max(bnu − bn−1
u , bn−1

l − bnl) < εb, (2.47)

or the convergence of the value function∫ bn+1
l

bn+1
u

[
Wn+1(x) − Wn(x)

]
dx < εW . (2.48)

Theorem 2.1, stated below and proved in [41], shows that by using
the update procedure (2.44) and (2.45), each step of the computational
scheme (a) is well defined, (b) results in policy improvement, (c) yields a
nested sequence of regions of inaction, and (d) converges to the optimal
value function. This is true, provided the initial guess for the region of
inaction contains the optimal region of inaction. It considers a function
fn that solves the Lfn in Ωn. Provided conditions (2.49) and (2.50)
hold, it shows that Ωn+1 ≡ (bn+1

u , bn+1
l) is well defined and a subset of

Ωn. If fn+1 is the solution to Lfn+1 on Ωn+1, Theorem 2.1 also shows
that fn+1 > fn. Further it shows that conditions (2.49) and (2.50) hold
for fn+1 as well. This makes it clear that further policy improvement
is possible by stepping in, that is, Ω∗ ⊂ Ωn+1. Equations (2.51) and
(2.52) are the simplified forms of Equations (2.44) and (2.45), for the
log utility case. Conditions (2.49) and (2.50) are the same as condition
(2.46).

Theorem 2.1. Assume that the Merton point is less than 1, that
is, α−r

σ2 < 1. Say, fn ∈ C2(Ωn) solves Lfn = 0 in Ωn with boundary
conditions Bfn = 0 at bnl and Sfn = 0 at bnu. Also say

(Sfn)x|bn
u+ > 0 and (2.49)

(Bfn)x|bn
l − < 0. (2.50)

If bn+1
u and bn+1

l are defined by,

bn+1
u = inf

{
x > bnu|(Sfn)x =

1
β3x2

[
log

fn
x

js
− β2x(js − fn

x)
]}

(2.51)

2.4 Illustrative Results 287

and

bn+1
l = sup

{
x < nn

l |(Bfn)x =
1

β3x2

[
log

fn
x

jb
− β2x(jb − fn

x)
]}

(2.52)

then

(1) bn+1
u , bn+1

l exist,
(2) bn+1

u < bn+1
l and Ωn+1 ⊂ Ωn,

(3) fn+1 > fn in the solvency region (λu − 1,∞),
(4) (Sfn+1)x

∣∣
bn+1
u + > 0 and (Bfn+1)x

∣∣
bn+1
l − < 0,

(5) bnu → b∗u and bnl → b∗l .

Say f solves Lf = 0 in Ω∗ ≡ (b∗u, b∗l) with boundary conditions Bf = 0
at b∗l and Sf = 0 at b∗u, then

(6) f ∈ C2(λu − 1,∞),
(7) max(Lf,Sf,Bf) = 0 in (λu − 1,∞),
(8) f = V , the optimal value function defined by Equa-

tion (2.10).

2.4 Illustrative Results

In this section, we first illustrate the boundary update sequence using
an example. We then explore the impact of the transaction cost on the
rate of convergence. Both these results are taken from [41]. The goal of
these examples is to lay out how the method works. It is not to explore
all the possible implications of having a method.

Let us consider a bank paying an interest r = 7% and a stock with
expected rate of return α = 12% and volatility σ = 0.4. We take a dis-
counting rate θ = 10% and as transaction costs for buying and selling
λl = λu = 5%. We seek the optimal policy for a risk-averse investor
who has the power utility of consumption (u(c) = cγ/γ) and a risk
aversion coefficient γ = −1. We begin with a guess transaction policy
that buys/sells to maintain the fraction of wealth in stock between 3%
and 50%. That is, we do not transact when the percentage of wealth in
stock is in the interval [3,50]. The boundary converges in six iterations

288 Portfolio Optimization with One Stock and Transaction Costs

1

2

3

4
5,6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−148

−146

−144

−142

−140

−138

−136

−134

−132

fraction of wealth in Stock (when wealth=1)

V
(x

,y
)

Fig. 2.3 Value functions for each boundary iteration. Illustrating policy improvement.

to within a tolerance of εb = 10−2. The converged values of bu and bl
are 5.77% and 21.52%.

Figure 2.3 shows the value function obtained in each iteration. The
support of the function is the region of inaction obtained in that iter-
ation. The figure provides a visual illustration of the two properties
of Theorem 2.1. First, one can observe that the supports are indeed
nested, showing that the regions of inaction obtained are nested as
predicted. Second, one can see that the value functions monotoni-
cally increase with the iteration. So the method does produce policy
improvement. A final thing to note is that convergence is obtained in
six iterations. This is commonly observed with the moving boundary
method — the number of iterations needed is typically very small.

For various transaction costs (λ = µ = 0.5%,1%,2%,5%, and 10%),
Figure 2.4 plots the size of the subsequent Ωn’s (as a percentage of
Ω0, that is 100Ωn

Ω0) Vs iteration number. Smaller transaction cost lev-
els correspond to smaller regions of inaction. Hence, it is natural that

2.4 Illustrative Results 289

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90

100

Iteration (n)

%
 o

f Ω
0

No. of iterations w.r.t Transaction costs

.5%

1%

2%

5%

10%

Fig. 2.4 Boundary convergence w.r.t. Transaction levels.

more iterations are required for the convergence of the boundaries when
transaction costs become small. But it is interesting to note that the
number of iterations required does not significantly increase even for
significant changes in transaction levels.

3
American Option Pricing

In the previous two sections we have looked at free-boundary problems
that were one dimensional. As a result the boundaries we were com-
puting were simply numbers. In this section, we will study a control
problem where the boundary is a function. In that sense we are esca-
lating the difficulty. And, as usual, the problem of computing the price
of an American option is interesting in its own right. It is assumed in
this section that the reader is familiar with the basics of option pricing.
If not, a good place to pick up the requisite background is [35]. Most
of this section is taken from [42].

The problem of computing the price of an American option belongs
to a class of problems called optimal stopping problems where a deci-
sion maker decides when to terminate the system in order to maxi-
mize a given objective. In the case of American options, termination
corresponds to exercise of the option and the objective is to maxi-
mize expected pay-off. Calculating the price of the option implicitly
involves calculating the optimal exercise policy that a person pur-
chasing the option will use. Thus, pricing involves solving a singular
control problem, with the optimal exercise policy that can be char-
acterized by an optimal exercise boundary. Unlike European options,

290

3.1 Problem Formulation 291

closed form solutions for the American option price or the optimal
exercise boundary do not exist. Hence, an efficient numerical method
is very useful.

In the previous sections, we converted a free-boundary problem,
where we had to simultaneously determine the solution of a differen-
tial equation and the domain over which it must be solved, into a
sequence of fixed-boundary problems that were relatively straightfor-
ward to solve. That is what we will do here as well. For any given
exercise boundary, solving for the value of the option under that policy
involves solving a simple PDE with fixed boundaries. Starting with a
(nearly) arbitrary boundary and its associated value function, we pro-
vide a boundary update procedure to improve the boundary. We show
that this method provides a monotone sequence of boundaries that con-
verge to the optimal exercise boundary. In this particular context, it
is possible to provide an interesting interpretation of the update pro-
cedure — the difference between two consecutive updates is the value
of an option with no final pay off but a positive pay-off for an early
exercise. And as before, each of the fixed-boundary problems is still
linear and can be solved with any standard PDE solver.

From the standpoint of the proposed method, pricing the Ameri-
can call is no different from pricing the American put. Moreover, the
price of an American call can be computed using American put pricing
methods [37]. The method as well as the proofs of convergence will hold
with trivial modifications. Moreover, when the call option is written on
a nondividend paying asset, it is well known (see [27]) that it is never
optimal to exercise the option early. Thus the price of the American
call on a stock that does not pay any dividend is exactly the price of
the European call. For these reasons, we restrict our attention to the
pricing of American put options only.

3.1 Problem Formulation

Consider an American put option written on an underlying asset. As in
the classical setting [6] we will assume perfect markets with a constant
risk-free interest rate r and a underlying asset price S(t) given by

dS(t) = µS(t)dt + σS(t)dB(t).

292 American Option Pricing

In the above, the constant µ is the expected return, the constant σ is
the volatility of the underlying asset price. If q denotes the strike price,
then the pay-off at expiration T is (q − S(T))+ ≡ max(q − S(T),0). Of
primary interest to us is the price function p(t,x) that represents the
price of the put option when the time to expiration is t and the under-
lying asset price is x. Note here that t represents time to expiration
and not simply the time. The option holders objective is to maximize
present value of expected payoff from the option. Assuming an absence
of arbitrage possibilities, the following facts are well established. We
refer the reader to [27] and [45] and the references therein for the veri-
fication of these results.

(1) The optimal exercise policy can be represented by a continu-
ous nonincreasing boundary b(t), 0 ≤ t < ∞. It is optimal to
exercise the put if the current stock price x ≤ b(t) and hold
if x > b(t).

(2) Define the continuation region C = {(t,x) ∈ (0,∞)2; x >

b(t)} and the exercise region S = {(t,x) ∈ (0,∞)2; x ≤ b(t)}.
Then p(·, ·), b(·) is the unique solution to the free-boundary
problem,

Lp = 0 in C (3.1)

p(t,b(t)) = q − b(t) t ∈ [0,∞) (3.2)

p(0,x) = (q − x)+ x ∈ [b(0),∞) (3.3)

lim
x→∞ max

0≤t≤t̄
|p(t,x)| = 0 t̄ ∈ [0,∞) (3.4)

Mp = 0 in S (3.5)

p(t,x) ≥ (q − x)+ (t,x) ∈ (0,∞)2 and (3.6)

lim
x↓b(t)

px(t,x) = −1 t ∈ (0,∞), (3.7)

where

Lp ≡ 1
2
σ2x2pxx + (r − δ)xpx − rp − pt and (3.8)

Mp ≡ (q − x)+ − p. (3.9)

(3) Further, the partial derivatives px,pxx, and pt exist and are
continuous on C. Although the smoothness of px across b(·)

3.1 Problem Formulation 293

is not known, it is defined and continuous. The optimal exer-
cise boundary is such that b(0+) = q if r ≥ δ and b(0+) =
qr/(δ) if r < δ. The mapping t �→ p(t,x) is nondecreasing,
x �→ p(t,x) is nonincreasing and convex, x �→ x + p(t,x) is
nondecreasing and convex.

(4) The perpetual boundary or the value to which b(t) goes to
asymptotically is given by

lim
t→∞b(t) =

γ̃

γ̃ − 1
q (3.10)

where γ̃ = − 1
σ [ν +

√
ν2 + 2r] and ν = b

σ − 1
2σ. Hence b(t) ∈

(γ̃
γ̃−1q,q] for all t ∈ [0,∞).

Consider Equations (3.1)–(3.7). In C, we have Lp = 0. We also have
in S, p = (q − x)+ and thus Lp < 0. Hence it is necessary that p satisfies

max(Lp,Mp) = 0 ∀(t,x) ∈ (0,∞)2. (3.11)

Since the solution to (3.1)–(3.7) is unique, it can be easily verified that
any function which has a continuous partial derivative with respect to
x and satisfies (3.11) along with the boundary conditions

p(0,x) = (q − x)+ x ∈ [b(0),∞) (3.12)

lim
x→∞ max

0≤t≤t̄
|p(t,x)| = 0 t̄ ∈ [0,∞) (3.13)

has to be the price function defined by (3.1)–(3.7). Moreover, the
regions in which Lp = 0 and (q − x)+ − p = 0 are tight would define
the continuation and the stopping regions, respectively. Readers famil-
iar with the variational inequality formulation will note that Equa-
tion (3.11) is the variational inequality, rewritten in a form that is
convenient for our use.

Thus the problem of computing the exercise policy and the price of
an American option has been reduced to the problem of solving (3.11)
along with (3.12) and (3.13) for a b(·) and a p(·, ·) that has continuous
partial derivatives. Say we were given the optimal exercise boundary
b(·). Then Lp = 0 can be solved in the region above b(·) along with
(3.12), (3.13) and p = (q − x)+ on b(·). In the region below b(·), the

294 American Option Pricing

Fig. 3.1 The free-boundary problem.

price p is set to (q − x). Thus obtained p is guaranteed to be the price
provided b(·) is the optimal exercise boundary (see Figure 3.1).

As can be noted it would be fairly simple to solve for the price p
provided the optimal exercise boundary is known. Any standard PDE
solution method or even off the shelf PDE solvers can be used to solve
such a PDE problem. However, what makes the problem hard is the
need to compute b(·) as a part of the solution itself. This need to jointly
solve for both p and b, the solution of a PDE and the domain over which
it must be solved, makes the American option pricing problem a free-
boundary problem.

3.2 The Moving-Boundaries Approach

Now, consider an arbitrary exercise policy defined by an exercise bound-
ary bn(t), 0 ≤ T ≤ ∞. Since b is continuous, we will consider a bn

that is continuous. Say pn(t,x) represents the value (price) of the put
option if the exercise policy dictated by the boundary bn is used, that
is, exercise the option whenever x ≤ bn(t). Corresponding to our def-
initions of C and S, we define Cn = {(t,x) ∈ (0,∞)2; x > bn(t)} and
Sn = {(t,x) ∈ (0,∞)2; x ≤ bn(t)}. An application of Itô’s formula yields

3.2 The Moving-Boundaries Approach 295

that pn is the solution to the initial-value problem,

Lpn = 0 in Cn (3.14)

pn(t,bn(t)) = (q − bn(t))+ t ∈ [0,∞) (3.15)

pn(0,x) = (q − x)+ x ∈ [bn(0),∞) (3.16)

lim
x→∞ max

0≤t≤t̄
|p(t,x)| = 0 t̄ ∈ [0,∞) (3.17)

and in Sn,

Mpn = (q − x)+ − pn(t,x) = 0. (3.18)

Hence for an arbitrarily chosen boundary bn, one has at hand a fixed-
boundary problem (3.14)–(3.17), (3.18) that can be solved to obtain pn.
By construction, pn is continuous across bn. As in the free-boundary
problems considered in the previous sections, if bn is not the optimal
boundary, Equation (3.11) would be violated at least in some parts of
(0,∞)2 or pn

x would not be continuous across the boundary bn.
Let us consider an example, a put with the following parameters:

risk-free rate r = 8%, underlying asset volatility σ = 20% and strike
price q = 100. Let us pick an arbitrary policy, b0(t) = 5 for all t ∈ [0,∞),
that is, exercise early only if underlying asset price is or falls below 5.
We solve for p0(·, ·) and Figure 3.2 plots a cross section of p0 taken
along the cut t = 1.5, that is, p(1.5,x). Now does p0 satisfy (3.11)?
Since b0 was arbitrarily chosen, we do not expect p0 to satisfy (3.11).
Then where and how is Equation (3.11) violated and can this teach us
how b0 can be improved?

In Figure 3.2, the solid line plots p0(1.5,x) and the dashed line sim-
ply shows (q − x). Figure 3.3 shows p0

x(1.5,x) which is −1 for x ≤ 5 and
then has a discontinuity at x = 5. Since b0(t) = 5, p0(1.5,x) is equal
to q − x for x ≤ 5 after which it goes below (q − x), clearly violat-
ing Equation (3.11). In this example, the violation occurs between 5
and 93.2. Choosing any point in this region for b1 would imply policy
improvement.

As long as our initial guess b0 lies below b, in Sn, we would have,
from (3.18), Lp0 < 0 and p0 = (q − x)+. On the other hand, in C0,
Figure 3.3 shows that p0

x < −1 just above b0. From the boundary condi-
tion (3.15), this implies that Mp0 = (q − x)+ − p0 > 0 in a region just

296 American Option Pricing

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100
p0(1.5,x)

x

Fig. 3.2 p0(1.5,x).

above b0. Hence the violation is in C0. The violation region is marked as
the gray area in Figure 3.4. Like in the free-boundary problems already
considered, choosing any boundary b1 that lies in the violation region
will yield policy improvement (Theorem 3.1) but would not necessarily
imply that b1 will still lie below b. However if the new boundary b1

is chosen as the contour of points that are the first local minima’s of
p0 + x along the x direction (Equation (3.19)), then b1 will satisfy the
superset conditions and assure us of policy improvement (Theorem 3.1).

In our example, we choose b1 as the contour of points on which
p0 + x is minimized. This is equivalent to moving to the point at which
(q − x) − p0 is maximized or the point at which p0

x is −1. The dashed
line in Figure 3.3 represents the −1 level, whose intersection with p0

x

3.2 The Moving-Boundaries Approach 297

0 10 20 30 40 50 60 70 80 90 100
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

p0
x
(1.5,x)

x

Fig. 3.3 p0
x(1.5,x).

Fig. 3.4 The moving boundary.

298 American Option Pricing

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

100

bn (T
)

T

The Moving Boundary

Fig. 3.5 Boundary convergence.

gives the new b1, which in this case occurs at 40.3 for t = 1.5. We pick
the new b1 and iterate.

Figure 3.5 shows the convergence of exercise boundaries. Starting
with b0(·) = 5, convergence is attained with b6(·), that is, in six iter-
ations. A more detailed description of the mechanics of convergence
is captured in Figure 3.6. Each row of Figure 3.6 corresponds to one
iteration and the first two columns show the value of pn and pn

x along
the cut t = 1.5. The third column shows bn(t) and bn+1(t) for t ∈ [0,2].

The second and third row show the subsequent boundary updates
and the corresponding pn and pn

x for n = 1,2. The last row shows the
plots that correspond to n = 6, which is the iteration that results in
convergence to within a low tolerance. Here b6(1.5) = 83.4. Note that
at convergence, p6 ≥ (q − x) always, p6

x = −1 at b6 and p6
x ≥ −1 always.

The moving-boundary algorithm for American option pricing can
be summarized as follows. Begin with a guess b0 that is guaranteed

3.2 The Moving-Boundaries Approach 299

0 50 100
0

20

40

60

80

100
pn(1.5,x)

n=
0

x
0 50 100

−2

−1.5

−1

−0.5

0

pn
x
(1.5,x)

x
0 0.5 1 1.5 2

0

20

40

60

80

100
bn(T)

T

0 50 100
0

20

40

60

80

100
pn(1.5,x)

n=
1

x
0 50 100

−2

−1.5

−1

−0.5

0

pn
x
(1.5,x)

x
0 0.5 1 1.5 2

0

20

40

60

80

100
bn(T)

T

0 50 100
0

20

40

60

80

100
pn(1.5,x)

n=
2

x
0 50 100

−2

−1.5

−1

−0.5

0

pn
x
(1.5,x)

x
0 0.5 1 1.5 2

0

20

40

60

80

100
bn(T)

T

0 50 100
0

20

40

60

80

100
pn(1.5,x)

n=
6

x
0 50 100

−2

−1.5

−1

−0.5

0

pn
x
(1.5,x)

x
0 0.5 1 1.5 2

0

20

40

60

80

100
bn(T)

T

Fig. 3.6 The iterations.

to be below the optimal exercise boundary b, that is b0(t) < b(t) for
all t ∈ (0,∞). A convenient choice would be b0(t) = b(∞), that is the
perpetual boundary given by Equation (3.10) for all t ∈ (0,∞). The
fixed-boundary problem (3.14)–(3.17) is solved using standard PDE

300 American Option Pricing

solvers for p0. Next, b1 is obtained from p0 using the update condition,

bn+1(t) = sup{x ∈ (bn(t),∞);pn
x(t,x0) < −1 ∀x0 ∈ [bn(t),x)}

∀n = 0,1, (3.19)

The sequence is then iterated. Theorem 3.1 shows that the moving
boundary procedure described above always provides a well defined
bn+1, yields a pn+1 such that pn+1 > pn and that the sequence bn con-
verges monotonically. The proof of Theorem 3.1 can be found in [42].

Theorem 3.1. If pn ∈ C1,2 is the solution to the initial-value problem
(3.14)–(3.17) and pn

x(t,bn(t)+) < −1 for all t ∈ (0,∞) then bn+1 defined
by (3.19) is well defined. Moreover, pn+1 (the solution to (3.14)–(3.17)
with boundary bn+1) is such that pn+1 > pn and pn+1

x (t,bn+1(t)+) < −1
for all t ∈ (0,∞).

Theorem 3.1 shows that provided pn
x < −1, we can obtain a bn+1

such that the associated pn+1 is larger, implying a policy improve-
ment. Moreover, it shows that pn+1

x < −1 at bn+1(t)+, which allows
the repeated use of Theorem 3.1 to obtain a monotone sequence of
boundaries each improving the policy. Since the sequence of policies
are monotone with an upper bound, convergence is inevitable. It is
easy to note that with px = 1 on the exercise boundary at convergence,
the free-boundary problem (3.14)–(3.17) is satisfied.

A heuristic reasoning that provides insight into why the update
procedure works can be described as follows. Consider two policies bn

and bn+1 and their corresponding price functions pn and pn+1. The
improved policy bn+1 is obtained from pn using Equation (3.19). Now
by defining P = pn+1 − pn we note that P solves the same PDE solved
by the price functions pn (3.14) in Cn+1. The only difference would be
in the boundary conditions satisfied by P . On bn+1 instead of (3.15),
we would have P (t,bn+1(t)) > 0 and at t = 0 instead of (3.16) we would
have P (0,x) = 0. Thus P can be interpreted as the price of a virtual
contract which pays 0 on expiry and a positive value if the price process
strikes the prescribed boundary bn+1. Since the pay-off of this contract
is always non-negative, with possible positive pay-offs, the price P is
positive, that is pn+1 > pn.

3.2 The Moving-Boundaries Approach 301

Finally some notes on implementation issues. As in any numerical
method one is forced to choose a finite domain and impose boundary
conditions on the finite boundaries. Since the problem under consider-
ation is an initial-value problem, the truncation of the t-axis is of no
consequence. However, the truncation of the x (vertical) axis brings
in an approximation, since the boundary condition (3.17) would be
imposed at a finite boundary rather than at infinity. For the purposes
of numerical implementation, we choose a T̂ that encompasses the times
of interest to us along with a large enough x̂ and consider the following
problem.

Lpn = 0 in Cn
T̂ ,x̂

pn(t,bn(t)) = q − bn(t) t ∈ [0, T̂)

pn(0,x) = (q − x)+ x ∈ [bn(0), x̂)

pn(t, x̂) = 0 t ∈ [0, T̂),

where CT̂ ,x̂ = {(t,x) ∈ (0, T̂) × (0, x̂);x > bn(t)}. Standard methods
such as the finite difference method and the Finite-Element Method
(FEM) can be employed to solve the fixed-boundary problem. Section 5
provides a brief overview of FEMs.

The stopping criterion for terminating the boundary iterations can
be set in two ways — either in terms of the convergence of the optimal
exercise region b(·), that is,

max
t

(bn(t) − bn−1(t)) < εb

or the convergence of the value function

max
t,x

(pn(t,x) − pn−1(t,x)) < εp.

Since the price function becomes less sensitive to the changes in bound-
ary as the boundary sequence approaches the optimal boundary, our
implementation tests for convergence to within εb = 10−4. From the
point of numerical computation, both stopping criteria are equivalent
and yield the same result for sufficiently small values of tolerance.

302 American Option Pricing

3.3 Alternative Numerical Approaches, Runtimes,
and Accuracy

Primarily due to the absence of a closed form solution, American option
pricing has precipitated a plethora of computational methods. Hence
it provides a very rich setting under which the performance of the
moving-boundary method can be compared against alternative numer-
ical approaches.

Pricing methodologies for American options can be classified into
two broad categories. The first set of methods express the price as
the expected value of the pay-off under a risk-neutral measure and
compute the expectation. The second set of methods express the price
as a solution to the free-boundary HJB equation and computes the
solution. While the second set of methods solve for the pricing function,
the first set of methods calculate the option price for a given time and
underlying asset price.

Unlike the evaluation of the expected pay-off, solving the free-
boundary problem has two distinct advantages. First, it provides the
optimal exercise policy, which is still usually calculated using the com-
putationally expensive binomial tree method or its variants. Second, it
provides the complete pricing function, thereby making the dynamic
real-time recalculation of the price unnecessary.

In the earliest work on American options [38], a free-boundary prob-
lem for the price function and the optimal exercise boundary (i.e., the
free-boundary) is derived. Further the price function is also expressed
in terms of the optimal exercise boundary. The analysis was further
extended in [40] where the properties of the optimal exercise boundary
was studied. Numerical methods to solve the free-boundary problem
are developed in [7], [13], and [48]. Closely related to the free-boundary
problem is the use of variational inequalities, developed in [5], to char-
acterize the price function. Relations of the free-boundary formulation
to the variational inequality formulation is discussed in [21].

Front-fixing methods [33, 46, 52] apply a nonlinear transformation
to map the unknown boundary on to a predetermined known boundary
and solve the resulting nonlinear problem. Penalty methods [46] on the
other hand eliminate the free-boundary by adding a nonlinear penalty

3.3 Alternative Numerical Approaches, Runtimes, and Accuracy 303

term to the PDE. Both these methods boil down to solving a set of
nonlinear equations, the computational speed and accuracy of which
largely depends on the initial guess, the problem size and the underlying
nonlinear solver used.

There are several methods that exploit the representation of the
price as the expected pay-off under the risk-neutral measure. The most
common among them are the binomial methods, where the price pro-
cess of the underlying asset is approximated by a binomial lattice. The
binomial method was introduced in [14]. Many generalizations and vari-
ants exist. Another approach to computing the expectation is to rep-
resent the price as the sum of the European option price and an early
exercise premium [12, 25, 29] using an integral equation. A related inte-
gral equation is first recursively solved to obtain the optimal exercise
boundary and then the price is obtained from a direct numerical inte-
gration that depends on the boundary. We refer to this method as the
integral method. Richardson extrapolation is used in [23] to solve the
integral expression. Pricing methods based on a lower bound and upper
bound are provided in [8]. Yet another approach is to use simulation
to estimate the price as in [10, 34, 51].

An overview of the tools, pricing methodologies, and the challenges
involved in American option pricing can be found in [45], [17], and [9].
Most of the numerical algorithms, results and implementation focus on
computing the option price for a given time to expiration and underly-
ing stock price. Detailed comparisons of various numerical methods in
this group can be found in [1, 8, 26].

To gauge the performance of the moving-boundary method in terms
of both runtimes and accuracy, we make comparisons against popular
methods that solve the free-boundary problem. Specifically, we con-
sider, the Brennan and Schwartz method [7], the front fixing method,
the penalty method, and the integral method. The following compar-
isons are taken from [42].

We take as exact the solution of the 10,000-step binomial method.
We use two implementations, a finite element implementation (using
Femlab libraries for Matlab) and a finite difference implementation to
solve the fixed-boundary problems that arise from our method. All our

304 American Option Pricing

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
50

55

60

65

70

75

80

85

90

95

100

T

bn
Binomial (δ=0)
MBM (δ=0)
Binomial (δ=0.12)
MBM (δ=0.12)

Fig. 3.7 Optimal exercise boundary comparison.

implementations are in Matlab and were run on a 2 Ghz Power Mac
G5 machine with 1 GB of RAM.

Figure 3.7 compares the boundaries obtained by the binomial tree
method and the proposed method, for δ = 0 and δ = 0.12. Other param-
eters are kept at r = 0.08,σ = 0.20, and q = 100. Table 3.1 shows p(3,x)
obtained by the two methods for x = 80,90,100,110, and 120. The val-
ues shown in the column titled MBM-FEM of Table 3.1 correspond to
the finite element implementation using a 8000 node mesh. Runtime
comparisons between the FEM implementation and the binomial tree
method are not meaningful since the binomial tree method calculates
the price only for a given time to expiration and an underlying stock
price, though it explicitly provides the optimal exercise boundary.

In Figure 3.8, we plot runtimes and errors associated with various
methods, averaged over 30 different parameter sets. Table 3.1 further
shows the corresponding prices for the specific parameter set associated

3.3 Alternative Numerical Approaches, Runtimes, and Accuracy 305

Table 3.1 Price comparison.

(x,δ) Binomial MBM-FEM MBM-FDM Bre&Sch Front-Fixing Penalty Integral
(80,0.12) 25.6577 25.6576 25.6407 25.6407 25.6445 25.6803 25.6579
(90,0.12) 20.0832 20.0830 20.0577 20.0577 20.0657 20.1007 20.0833
(100,0.12) 15.4981 15.4973 15.4690 15.4690 15.4733 15.5110 15.4985
(110,0.12) 11.8032 11.8029 11.7741 11.7741 11.7573 11.8114 11.8032
(120,0.12) 8.8856 8.8851 8.8605 8.8605 8.7839 8.8894 8.8855
(80,0) 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 19.9995
(90,0) 11.6974 11.6969 11.6889 11.6889 11.9029 11.7207 11.6981
(100,0) 6.9320 6.9317 6.9203 6.9203 7.2527 6.9573 6.9325
(110,0) 4.1550 4.1544 4.1427 4.1427 4.4841 4.1760 4.1552
(120,0) 2.5102 2.5098 2.4996 2.4996 2.7760 2.5259 2.5104

10
−4

10
−3

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

125x25

250x50

500x100

125x25

250x50

500x100

10
20

50

100

250

500

1000

5000

10000

MBM-FEM(500)

MBM-FEM(8000)

Front-Fixing(1000x1000)

Penalty(1000x1000)

RMSE

R
un

tim
e(

S
ec

s)

Bre&Sch

MBM-FDM

Integral Method

Fig. 3.8 Runtime vs RMSE.

with the table. We discuss below in brief the methods considered and
the parameters used. Further details and more comparisons including
computational accuracies of greeks can be found in [42].

For the finite element implementation of the moving-boundary
method (MBM-FEM). Runtimes and errors associated with two

306 American Option Pricing

discrete meshes of 500 and 8000 nodes (generated by the default mesh
generation function in Femlab) are shown. All problems were initiated
with b0 set to the perpetual boundary given by Equation (3.10) and con-
verged in less than or equal to six iterations. We use quartic Lagrange
elements as the finite element basis.

The finite difference implementation of the moving-boundary
method (MBM-FDM) and the implementation of the method presented
in Brennan and Schwartz [7] (Bre&Sch), results for three different rect-
angular mesh sizes of 500 × 100, 250 × 50, and 125 × 25 are plotted.
The Brennan and Schwartz method also uses a finite difference scheme.
The only difference between the methods is the boundary update pro-
cedure and hence the speeds of convergence. Therefore the solution and
the RMSEs associated with both these methods are the same (as evi-
dent from Table 3.1) while there is considerable speed difference. The
values in Table 3.1 correspond to the 500 × 100 mesh.

The front-fixing method and penalty method use a 1000 × 1000
rectangular grid and the implicit finite difference scheme described
in [46]. As described briefly earlier, this method results in having to
solve a system of nonlinear equations. We use the standard nonlinear
solver in Matlab’s optimization toolbox. One has to keep in mind that
the speed and accuracy of such a method largely depends on the ability
of the nonlinear solver used. However, irrespective of the solver, large
problem sizes become significantly harder to solve relative to linear
problems.

Comparison of computational efficiencies of the front-fixing method
or the penalty method to the moving-boundary method simply becomes
a comparison of solving a set of nonlinear equations as opposed to
solving a set of linear equations n times (n is the number of iterations
needed, usually ≤ 6).

Integral methods exploit the representation of the American put
price as the sum of the European put price (p0) and an early-exercise
premium. The premium is expressed in terms of the optimal exer-
cise boundary. The optimal exercise boundary in turn is expressed
as a solution to an integral equation. The integral equation is recur-
sively solved starting with b(0) and progressing in discrete steps. The
largest fraction of runtime as well as the significant source of numerical

3.3 Alternative Numerical Approaches, Runtimes, and Accuracy 307

error arises in solving this equation. Runtimes and errors involved
with various discretization frequencies are plotted in Figure 3.8. Val-
ues shown in Table 3.1 correspond to the 10,000 step discretization
frequency.

Finally, it is important to place the moving-boundary method in the
context of the method developed by Kushner and co-workers [31, 32].
Kushner’s method is a finite difference discretization scheme for
stochastic control problems that allows for the interpretation of the
resulting approximation as a Markov Decision Problem (MDP). The
resulting MDP can be solved using general techniques like value or pol-
icy iteration. This conversion to MDPs helps establish the convergence
and the stability of the resulting finite difference approximation.
The computational speed and accuracy, however, depend more on
the method used to solve the resulting MDP; general schemes that
ignore the special structure of singular control problems do not per-
form as well those that incorporate special structure. The Brennan
and Schwartz [7] method, described and compared against as Bre&Sch
above, is another finite difference scheme which takes advantage of
the underlying problem structure. Since the moving-boundary method
outperforms the Brennan and Schwarz method, one can reasonably
expect that it will outperform Kushner’s method with a general MDP
solver for the American Option pricing problem. More importantly, it
is not right to think of Kushner’s method as a competing method for
the moving-boundary method. The moving-boundary technique can
be used to solve the MDPs [19] that arise in Kushner’s method, as
in as in [11], improving the performance over general MDP solvers.
A drawback of Kushner’s method is that it is limited to finite difference
approximations. The moving-boundary method, on the other hand,
can be used with either a finite difference (as in MBM-FDM above)
or a finite element scheme. The latter provides additional improve-
ment in computational performance, and so one expects that the
moving-boundary method combined with finite element discretization
will yield performance that is superior to Kushner’s method imple-
mented with a general MDP solver. Indeed, this is established via
computational experiments on a particular singular control problem
in [30].

308 American Option Pricing

3.4 Matlab Code for the Finite Difference Implementation

The following MATLAB function computes the price of the American
option given r,δ,σ,K,nx,nt,X̂, and T̂ . Here nx and nt represent the
number of space and time discretizations, while X̂ and T̂ represent the
values of x and t at which the state space is truncated for numerical
purposes. The function returns a matrix P that contains the price of
the option at each grid point and a vector b that contains the exercise
boundary values for each discrete time point.

The code first pre-computes the finite difference coefficients of the
operator L for all grid points and stores it in matrix A. Then it steps
back sequentially in time starting from expiry. For each time point, first
a boundary guess bn is made, the corresponding finite difference system
of equations are assembled and solved for Pn. If convergence has not
been achieved, the boundary is then moved using Equation (3.19) and
iterated.

function [P,b]=AmericanPrice(r,delta,sigma,K,nx,nt,

Xhat,That)

%Usage:P=AmericanPrice(r,delta,sigma,K,nx,nt,Xhat,That)

%Example:P=AmericanPrice(0.08,0.12,.2,100,50,10,300,3)

dx=Xhat/nx;

dt=That/nt;

for i=1:nx-1

A(i,i:i+2)=[((r-delta)*dt*i-sigmaˆ2*dt*iˆ2)/2...

1+r*dt+sigmaˆ2*dt*iˆ2

(-(r-delta)*dt*i-sigmaˆ2*dt*iˆ2)/2];

end

P(:,1)=max(K-[0:dx:Xhat],0);

if(delta==0)

b(1)=K;

else

b(1)=min(K,K*r/delta);

3.4 Matlab Code for the Finite Difference Implementation 309

end

for j=2:nt+1

bn=0; run=1;

while(run)

An=[A(1+bn:end,1+bn:end)];

An(end+1,end-1:end)=[-1 1];

An(end+1,1)=1;

Cn=[P(bn+2:nx,j-1)’ 0 K-bn*dx]’;

Pn=inv(An)*Cn;

if(Pn(2)$<$K-((bn+1)*dx))

bn=find(sign(diff(Pn)/dx+1)-1,1,{’last’})+bn;

else

b(j)=bn*dx; run=0;

end

end

P(:,j)=[K-[0:bn-1]*dx Pn’];

end

4
Portfolio Optimization with Two Stocks

and Transaction Costs

Thus far, we have only discussed problems that have been solved by
other methods. Now we come to a problem, where, to the best of our
knowledge, only the moving-boundary method has yielded results. Of
course, other methods such as that in [32] would work for this prob-
lem, but there is no published evidence. And, this problem provides
an excellent illustration of how to handle implicit boundary conditions.
Most of this section is taken from [43].

The problem we consider here is the two-stock variant of the
problem considered in Section 2. As before we will use the homothetic
property to reduce the problem to a two-dimensional free-boundary
problem, that we will solve by a procedure that is exactly analo-
gous to the one in Section 2. As an illustration of the utility of the
moving-boundary method, we will demonstrate the impact of cor-
relation between the two stock returns on the structure of optimal
transaction policies.

Although we only consider the two stock case here, the basic for-
mulation is the same when more stocks are concerned. The primary
issue with considering more stocks is not difficulty of formulation.
Rather, it is the difficulty of obtaining a solution due to the curse

310

4.1 Problem Formulation 311

of dimensionality. So for higher dimensions, we will look at a variant of
the portfolio optimization problem (without consumption) in Section 6
and describe a moving-boundary method based on approximating the
free boundaries by hyperplanes and using simulation to obtain the value
function (which is a solution a PDE) at each iteration.

4.1 Problem Formulation

The price of stocks will be represented by a two-dimensional vector S.
The evolution of S is modeled analogous to Equation (2.5),

dS = diag(S) [αdt + σdB] + dL − dU, (4.1)

where B is a two-dimensional Brownian motion. The investor’s initial
position is given by S(0−) = y, where the ith component of y is repre-
sented by yi. We again define the value function V (x,y) by Equation
(2.10), but now take y as a two-dimensional vector. Again as in the
one-stock case, one can use dynamic programing arguments in contin-
uous time to show that V solves the free-boundary problem (analogous
to Equation (2.11)),

max[L̃V , B̃1V, S̃1V, B̃2V, S̃2V] = 0, (4.2)

where

L̃V ≡ 1
2

∑
i=1,2

∑
j=1,2

aijyiyjVij

+
∑
i=1,2

αiyiVi + (rx − c)Vx − θV + u(c) (4.3)

B̃iV = max
i

(−(1 + λli)Vx + Vi) (4.4)

S̃iV = max
i

((1 − λui)Vx − Vi) (4.5)

a = σσ′

c =

{
V

1
γ−1

x when u(c) = cγ/γ

V −1
x when u(c) = log(c).

(4.6)

In the above Vi denotes the partial differential with respect to yi and
Vij denotes ∂2V

∂yi∂yj
. The value function V is still concave, the region

312 Portfolio Optimization with Two Stocks and Transaction Costs

of inaction is still a cone (now in three dimensions) and homothetic
property still holds, that is, for any ρ > 0,

V (ρx,ρy) = ργV (x,y) when u(c) = cγ/γ

V (ρx,ρy) =
1
θ

log(ρ) + V (x,y) when u(c) = log(c)

As in the one stock case, we can leverage on the homothetic property
to reduce the dimensionality of the problem by one, resulting in a free-
boundary problem set in two dimensions rather than three. However,
to retain symmetry we take an iso-wealth cut rather than the iso-stock
cut taken in the one stock case. That is we define,

W (y) = V (1 − e · y,y) (4.7)

where e is the 2-vector of ones. Figure 4.1 shows the region of inaction
and the wealth equals one cut. Figure 4.2 shows the different regions
along the wealth equals one cut. The regions outside the region of inac-
tion Ω fall into two categories (Figure 4.2), indicated I and II. In regions

x

y
1

2
y

u2b

l1
b

l2
b

u1b

Fig. 4.1 Illustrating homotheticity.

4.1 Problem Formulation 313

II

2

Buy y
1

Sell y2

Sell y
1

Buy y
1

Buy y
1

Sell y2

Sell y
1

Buy y2

Buy y2

Sell y
1

Sell y2

0 y

y
2

1

Region of inaction
Ω

b

b

b

l1

l2

u2

u1

b

II I

III II

I
I

Buy y

Fig. 4.2 Regions of inaction and transactions.

denoted by I, just enough of one asset is bought or sold to bring the frac-
tions of wealth to Ω. In regions denoted II, it is not possible to transact
only one asset to reach Ω. Hence in II, two assets are transacted to reach
a corner of Ω. The sequence in which the assets are transacted is irrele-
vant since transactions are instantaneous. Though the transactions are
indicated on the wealth equals one plane, all transactions change the
total wealth. So effectively one would be moving to a different wealth
plane when transacting.

In this case we have four boundaries. The boundaries that represent
buying stock 1 and 2 will be denoted bl1 and bl2, respectively. Similarly
the boundaries that represent selling stock 1 and 2 will be denoted bu1

and bu2, respectively.
The computational procedure for both the log utility and the power

utility cases remains essentially the same. Only the specific equations
used in the computations differ. Hence we will only consider the case
when u(c) = log(c). In terms of W (y), Equation (4.2) becomes

max[LW, B1W, S1W, B2W, S2W] = 0 (4.8)

314 Portfolio Optimization with Two Stocks and Transaction Costs

with,

LW ≡
∑
i=1,2

∑
j=1,2

ηijWij +
∑
i=1,2

biWi − βW + ν

+ max
c

(
log(c) − c

(
1
θ

−
∑

i

yiWi

))
, (4.9)

BjW ≡ Wj

(
yj +

1
λlj

)
−


1
θ

−
∑
i	=j

Wiyi


 , (4.10)

SjW ≡ Wj

(
yj − 1

λuj

)
−


1
θ

−
∑
i	=j

Wiyi


 , (4.11)

where

ηij =
yiyj

2

∑
k

∑
l

akl(δki − yk)(δlj − yl),

bi = yi

(
−1

2

∑
k

∑
l

akl(δkiyl + δliyk − 2ykyl) +
∑

k

(δki − yk)(αk − r)

)

β = θ

ν =
1
θ

(
r − 1

2

∑
k

∑
l

aklykyl +
∑

k

yk(αk − r)

)
.

Here δik represents the Kronecker delta function, with δik = 1 if and
only if i = k and δik = 0 otherwise.

The reader should note the form of the boundary conditions in
(4.10) and (4.11) is not a Dirichlet, Neumann or oblique derivative.
Rather, they take the form of implicit-boundary conditions. One must
adapt the PDE solver to ensure that these conditions can be handled
by it. Section 5 provides a brief discussion of finite element methods
and how such boundary conditions can be handled.

As with V , using concavity of W we can argue that the solution
to (4.8)–(4.11) must reduce to finding W and a region of inaction, Ω∗,
such that

LW = 0 in Ω∗ (4.12)

4.1 Problem Formulation 315

along with BjW = 0, SjW = 0 in the buy j regions and the sell j
regions, respectively. We would also need that (4.8) holds in the entire
solvency region. Using a two step procedure as in Section 2.3, we begin
by choosing an arbitrary region of inaction, Ω0. For the transaction
policy corresponding to Ω0, we calculate the optimal consumption c(0)

and the associated value function W (0). In the next step, we use a
boundary update procedure that obtains a new region of inaction Ω1

from Ω0 and W (0).
We again assume that the arbitrarily chosen Ω0 is large enough so

that the optimal region of inaction, Ω∗ is a subset of Ω0. However, if
Ω0 is not large enough, the superset condition given by Equation (4.21)
will fail, in which case one can restart the iteration with a larger Ω0.

Step 1: For notational convenience, letting L̂ denote the first four
terms in Equation (4.9), c(n) and W (n) must solve the nonlinear elliptic
PDE,

max
c(n)

[
L̂W (n) +

(
log(c(n)) − c(n)

(
1
θ

−
∑

i

yiW
(n)
i

))]
= 0 (4.13)

in a given Ωn, with boundary conditions

BjW
(n) = 0 at buy j boundary, (4.14)

SjW
(n) = 0 at sell j boundary. (4.15)

We will use an iterative scheme to solve (4.13)–(4.15) as follows.
Given a consumption c(n,m),

LW (n,m) +

(
log(c(n,m)) − c(n,m)

(
1
θ

−
∑

i

yiW
(n,m)
i

))
= 0 in Ωn

(4.16)
is a linear elliptic equation and can be solved along with (4.14) and
(4.15) to obtain W (n,m), where W (n,m) is the value function given Ωn

and c(n,m). Once we solve the linear problem we update our consump-
tion with the first-order condition in Equation (4.13), that is,

c(n,m+1)(y) =
[
γW (n,m) −

∑
i

(
yiW

(n,m)
i

)]−1

. (4.17)

316 Portfolio Optimization with Two Stocks and Transaction Costs

In the representation c(n,m), n represents the iteration index of the
boundary update sequence, while m represents the index of the con-
sumption iteration. A good guess for the initial consumption c(n,0)

would be a value less than the Merton consumption fraction, since with
transaction costs one does not expect to consume more than when there
are no transaction costs.

c(n,0)(y) < θ ∀y ∈ Ω(n). (4.18)

We terminate the iterative procedure when

sup
y∈Ω(n)

∣∣∣c(n,m+1)(y) − c(n,m)(y)
∣∣∣ < εc (4.19)

for some tolerance parameter εc.

Step 2: Next we update the region of inaction Ωn to Ωn+1 with bn+1
bi ’s

and bn+1
si ’s given by

bn+1
li = min

{
b ≥ bnli|b is the local maximizer of BiW

(n)

along the yi axis
}

bn+1
ui = max

{
b ≤ bnui|b is the local maximizer of SiW

(n)

along the yi axis
}

(4.20)

Essentially, onceWn is known, each point on the old boundary is moved
along the ith axis, toward the interior of Ωn, to the first point where
BiW

(n) (SiW
(n)) is maximized.

The superset condition that guarantees Ω∗ ⊂ Ω0 is,

BiW
(0)
∣∣∣
b0li

≤ BiW
(0)
∣∣
b0li+τei

∀i and

SiW
(0)
∣∣∣
b0ui

≤ SiW
(0)
∣∣
b0ui−τei

∀i, (4.21)

for some ε > 0 and all τ ∈ (0, ε). The above conditions are higher dimen-
sional versions of (2.46). If either of the above conditions fail, then it
indicates that the arbitrarily chosen Ω0 was not large enough. A restart
of the procedure with a larger Ω0 is required.

Next, we seek insight in three dimensions as to why this update pro-
cedure works. Consider the V (n) that can be obtained from W (n) and
the step of updating bnu1 to bn+1

u1 . Figure 4.3 shows the cross-section

4.1 Problem Formulation 317

i

0

b
ui
n

b
ui
n+1

b li
n+1

b
li
n

x+1.y=1 plane

1

~p
1 p

2

Slope =

ui

li1+λ

−1/(1−λ)

x

y

p

Fig. 4.3 The boundary update procedure.

of the (x,y) space cut at y2 = constant. Here the x and y axis
indicate the wealth in bank and stock 1, respectively. Now say the
stochastic processes escapes Ωn at point p1 ∈ bns1. The transaction pol-
icy dictated by Ωn is that we sell stock i instantaneously. This sell-
ing would move the process in the direction ((1 − λu1),−1). Also at
p1, we have from the boundary conditions that ∇V · ((1 − λu1),−1) =
(1 − λu1)Vx − Vy1 = 0. Consider a point p very close to p1 along
the iso-wealth line, shown in figure. Say, at p, (1 − λu1)Vx − Vy1 > 0
which indicates that pushing the processes in the sell direction, that
is, ((1 − λu1),−1) increases the value function V . Since it is optimal
to sell stock at p a point arbitrarily close to p1, it would be profitable
to move the boundary to p. Extending the argument, it would be prof-
itable to move the boundary to any point p3 along the iso-wealth line
provided (1 − λu1)Vx − Vy1 > 0 between p1 and p3. Figure 4.4 shows
a typical plot of (1 − λu1)Vx − Vy1 along the iso-wealth cut. Moving
the left boundary to any point between p1 and p3 is bound to yield
an improvement in the value function. This suggests that the update
procedure is a policy improvement procedure.

We still need to decide how far we need to move in from p1. As in the
one stock case, a consideration for where we wish to move is the desire

318 Portfolio Optimization with Two Stocks and Transaction Costs

0.45 0.5 0.55 0.6 0.65 0.7 0.75
−30

−25

−20

−15

−10

−5

0

5

10

15

20

x

(1
−λ

ui)
V x −

 V
yi

P
1

P
2

P
3P

~

Fig. 4.4 (1 − λu1)Vx − Vy1 along the transaction cut.

for a procedure that yields a nested sequence of regions of inaction, that
is, Ωn+1 ⊂ Ωn. If we can choose such an update procedure, this would
give us tremendous computational advantage because we no longer need
to calculate the value function W (n) in the entire state space and can
restrict our attention to calculating it only in the region of inaction Ωn.
Thus, we would have to solve only one PDE rather than 2N + 1 PDEs
at each iteration. To ensure this we pick p2, that is, the point at which
(1 − λu1)Vx − Vy1 is maximized, rather than p3.

4.2 Regions of Inaction for the Two-Stock Case

What do the optimal regions of inaction look like? How do they con-
verge? How is the structure of the region of inaction altered when stock
returns are correlated? We seek computational answers to these ques-
tions in this section.

We begin our exploration by showing a typical boundary update
sequence. Later we consider the impact of the covariance structure.

4.2 Regions of Inaction for the Two-Stock Case 319

Consider the two-stock problem with the following parameters a
bank with interest rate 7%, investors discounting rate 10% and risk
aversion coefficient −1, expected returns on both stock 15%, covariance

matrix taken as
(0.4 0.1
0.1 0.4

)
with all transaction costs set to 1%. We

begin our boundary update procedure with a guess of Ω, as the square,
[0.01,0.5]2, that is, the initial guess for the transaction policy is not to
trade when the fractions of wealth in either stock lies in the interval
[0.01,0.5]. We use the boundary update procedure and obtain various
regions of inaction with each iteration. Figure 4.5 shows the sequence
of boundaries generated. Convergence occurs in seven iterations for
this case.

Now we turn our attention to the impact of correlation, as an illus-
tration of the utility of our method. In order to make meaningful infer-
ences on the change of shape of the region of inaction, the covariance
matrix σ should be changed in a manner so as to keep the Merton point
fixed. For the power utility function the Merton point in given by the

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

y
1

y 2

Fig. 4.5 Sequence of boundaries generated.

320 Portfolio Optimization with Two Stocks and Transaction Costs

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

y
1

y 2

0
0.025

0.075

0.05

Fig. 4.6 Impact of positive correlation. Stocks with equal expected returns for various values
of κ.

vector (σσ′)−1(α−r)
1−γ . If σ ≡

(
σv σc

σc σv

)
, then the Merton point is

1
(σ2

v − σ2
c)2(1 − γ)

(
(σ2

v + σ2
c)(α1 − r) − 2σvσc(α2 − r)

(σ2
v + σ2

c)(α2 − r) − 2σvσc(α1 − r)

)
.

If α1 = α2 = α, say, then the above vector becomes
1

(σv+σc)2(1−γ)

(
(α − r)
(α − r)

)
. The Merton point will not change as

long as σv + σc remains constant. Therefore Figure 4.6 plots the region

of inaction for σ =
(

0.4 − κ κ

κ 0.4 − κ

)
for κ varying from 0 to 0.075.

When κ = 0.075 the covariance term is around 23% of the variance
term. We retain all the parameters as in the base case but take the
expected stock returns for both stock to be 12%.

We observe that the region of inaction shrinks along the (1,1) direc-
tion (the main diagonal) and elongates along (1,−1) as the positive cor-
relation, as measured by the parameter κ, increases. With larger values

4.2 Regions of Inaction for the Two-Stock Case 321

of κ it is less likely that an increase in the value of stock 1 is accompa-
nied by a decrease in the value of stock 2. Given a region of inaction,
it is less likely that sample paths of the value processes will turn away
from the main diagonal and hence transactions are more likely to even-
tually occur along the main diagonal. Given this inevitability, one does
not save much on transaction costs by giving the sample paths room
to turn away from the boundary along the main diagonal. Therefore, a
new region of inaction in which one transacts closer to the Merton point
along the main diagonal will provide a better value function because it
does not let the value function deteriorate as much before it intervenes.
Of course, one can only shrink the region so much along the main diag-
onal before the transactions costs become prohibitive. The symmetric
opposite reasoning explains the elongation along the (1,−1) direction.
Another explanation of this behavior is that in the case of positively
correlated stock, one does not loose much by having more than the
Merton value in one stock and less in the other, since one partially
hedges the other. Therefore, one can tolerate more deviation from the
Merton point along the (1,−1) direction than the (1,1) direction.

5
Computing the Solution of the Fixed-boundary

PDE

In all of the previous sections, we have skirted the issue of solving the
PDE that arises in each iteration of our method. This is deliberate. We
designed our method in such a way that the PDE in each iteration is
a linear elliptic PDE, and there are many ways to solve these PDEs.
Any one of them could be used in conjunction with our method. The
reader can plug in his or her favorite PDE solver. However, there are
three issues to keep in mind. First, we do need good estimates of the
gradient of the solution, in order that we can apply our update pro-
cedure. Second, we need to solve the problem over arbitrarily shaped
domains as our update procedure produces. Third, we will need to deal
with implicit boundary conditions such as (4.14) and (4.15).

To accommodate all these three issues we recommend the use of the
Finite Element Method (FEM). We describe a version of the FEM that
is capable of solving (4.16) with the implicit boundary conditions (4.14)
and (4.15). The method is sufficient to solve all the problems studied
in this survey. The description of the method is taken from [43]. The
reader is advised to consult [24] and [47] for the general treatment of
the FEM.

322

323

Since we are dealing with just the solution of the PDE in one of the
iterations, we will drop the iteration indices (n,m). We will also use ∂Ω
to represent the boundary of the region of inaction Ω. Since c is known
in Equation (4.16), for some suitable functions of y: η̃ij ,α̃i,β̃ and f̃ , we
can write (4.16) as∑

i

∑
j

η̃ijψij +
∑

i

α̃iψi + β̃ψ = f̃ in Ω. (5.1)

Similarly for some suitable functions r and ri, the boundary conditions
(4.14) and (4.15) can be written as∑

i

riψi + rψ = 0 on ∂Ω. (5.2)

Our objective is to find ψ: Ω → R such that Equations (5.1) and (5.2)
are satisfied.

First, we write out the so-called weak form of (5.1) and (5.2), which
is an integral form of Equation (5.1). To solve the weak form of (5.1)
we need to find a ψ ∈ H1(Ω) such that for any test function ϑ ∈ H1(Ω)
the following holds

∑
i,j

η̃ij

(∫
∂Ω
ψiϑ −

∫
Ω
ψiϑj

)
+
∑

i

α̃i

∫
Ω
ψiϑ + β̃

∫
Ω
ψϑ =

∫
Ω
f̃ ϑ.

(5.3)

along with the necessary-boundary conditions, going to be described
shortly. Here H1(Ω) is the Sobolev space of functions that have
square integrable generalized first derivatives in Ω, that is, f ∈ H1(Ω)
provided, ∫

Ω
f2

yi
dyi < ∞ ∀i.

In the usual finite element procedure the Neumann boundary con-
ditions (i.e., ψi is known on ∂Ω) are incorporated at this stage by sub-
stitution in the first term of (5.3). Dirichlet boundary conditions (ψ is
known on ∂Ω) are incorporated by restricting that we find a ψ belong-
ing to H1(Ω) and satisfying the Dirichlet boundary condition for all ϑ ∈
H1(Ω). For our purposes, to account for implicit boundary conditions

324 Computing the Solution of the Fixed-boundary PDE

we modify the weak form to finding a Λ and ψ ∈ H1(Ω) such that for
any two test functions ϑ ∈ H1(Ω) and ϑΛ ∈ H1(Ω) the following holds

∑
i,j

η̃ij

(∫
∂Ω
ψiϑ −

∫
Ω
ψiϑj

)

+
∑

i

α̃i

∫
Ω
ψiϑ + β̃

∫
Ω
ψϑ +

∫
∂Ω

[(∑
i

riψi + rψ

)
ϑΛ − Λϑ

]

=
∫

Ω
f̃ϑ. (5.4)

In (5.4), Λ is an unknown (to be determined) multiplier that is used
to include the boundary conditions (5.2) into (5.3).

The following theorem shows that the solution to the strong form
always is a solution of the weak form and a solution to the weak form
is a solution of the strong form provided it has sufficient smoothness.

Theorem 5.1. (i) If ψ ∈ C2(Ω) solves (5.1) along with (5.2), then
ψ solves (5.4) for any two test functions ϑ and ϑΛ in H1(Ω). (ii) If
ψ ∈ C2(Ω) and solves Equation (5.4) for all test functions ϑ and ϑΛ in
H1(Ω), then ψ solves (5.1) along with (5.2).

An issue that we will not address in this survey is whether such a
sufficiently smooth ψ exists or not. We will simply assume that it exists
and proceed.

The finite element method solves the weak form. As with any numer-
ical scheme the first step is to divide the domain Ω into a collection
of simple regions. This is called meshing and can be accomplished eas-
ily using one of the many mesh generation routines that are widely
available. We use meshes that have a larger mesh density in the neigh-
borhood of the boundaries. Almost all mesh generation programs, like
the mesh generation routine in Matlab’s PDE toolbox, allow for control
of mesh sizes and densities. The FEM along with a well configurable
mesh generation routine is well suited to handle domains of arbitrary
shapes.

An example of our mesh is shown in Figure 5.1. The vertices of the
mesh elements are called nodes. Let M be the total number of nodes

325

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Fig. 5.1 A typical mesh in two dimensions.

andMp the number of nodes on the boundary. Once we have a mesh, the
idea is to introduce an approximation ψ̂ to our unknown ψ. Choosing
a suitable set of basis functions ϕ(1),ϕ(2), . . . ,ϕ(M), we introduce the
approximation

ψ̂ =
∑

l

plϕ
(l). (5.5)

This transforms the problem of finding the function ψ to finding a
ψ̂, which is described by a finite number of unknowns pl. By choosing
ϕ(l) to be a function that equals 1 at node l and 0 at all other nodes,
pl will be the value of ψ̂ at node l. Similarly we represent Λ by

Λ =
∑
l∈∂Ω

pΛ
l ϕ

(l). (5.6)

Note that the notation
∑

l implies that l runs through all nodes, that is
l ∈ {i : Node i ∈ Ω} and

∑
l∈∂Ω implies that l runs through all bound-

ary nodes only, that is l ∈ {i : Node i ∈ ∂Ω}. Many classes of basis

326 Computing the Solution of the Fixed-boundary PDE

functions are available and differ by the value they take within the
element [24]. Since we seek new boundaries during our boundary itera-
tion step, as functions of the derivative of the value function, we choose
Hermite elements as our basis function [24]. Functions that are speci-
fied as linear combinations of the Hermite basis functions can be made
to have continuous derivatives on the vertices of the elements. This is
essential for obtaining a good derivative estimate.

We now discretize the weak form by taking that test functions
belong to the space of functions that are linear combinations of our
basis functions ϕ(l). This is called the Galerkin method. Thus, repre-
senting the test functions by ϑ =

∑
k qkϕ

(k) and ϑΛ =
∑

k∈∂Ω q
Λ
k ϕ

(k),
the weak form can be written as

qk

[∑
i,j

η̃ij

(∫
∂Ω
ψiϕ

(k) −
∫

Ω
ψiϕ

(k)
j

)
+
∑

i

α̃i

∫
Ω
ψiϕ

(k) + β̃

∫
Ω
ψϕ(k)

−
∫

∂Ω
Λϕ(k) −

∫
Ω
f̃ ϕ(k)

]
+ qΛk

[∫
∂Ω

(∑
i

riψi + rψ

)
ϕ(k)

]
= 0.

(5.7)

Since the above holds for all test functions, each of the two terms in
the square brackets above should be equal to zero. Approximating the ψ
in the first term of (5.7) with ψ̂ given by (5.5), and using Equation (5.6)
we have,

pl

[∑
i,j

η̃ij

(∫
∂Ω
ϕ

(l)
i ϕ(k) −

∫
Ω
ϕ

(l)
i ϕ

(k)
j

)
+
∑

i

α̃i

∫
Ω
ϕ

(l)
i ϕ(k)

+β̃
∫

Ω
ϕ(l)ϕ(k)

]
− pΛ

l

[∫
∂Ω
ϕ(l)ϕ(k)

]
=
∫

Ω
f̃ ϕ(k). (5.8)

Equation (5.8) has M unknown pl’s and Mp unknown pΛ
l ’s. We can

write (5.8) as

AP = F, (5.9)

327

where

Akl =




∑
i

∑
j η̃ij

(∫
∂Ωϕ

(l)
i ϕ(k) −

∫
Ωϕ

(l)
i ϕ

(k)
j

)
for l ≤ M

+
∑

i α̃i

∫
Ωϕ

(l)
i ϕ(k) + β̃

∫
Ωϕ

(l)ϕ(k)

−
∫
∂Ωϕ

(l)ϕ(k) for M < l ≤ Mp

Fk =
∫

Ω
f̃ ϕ(k)

P = {p1,p2, . . . ,pM ,p
Λ
1 , . . . ,p

Λ
Mp

}.

However as specified A is M × (M + Mp) and is obviously of not rank
M + Mp. We need to augment the system with additional constraints
so as to uniquely specify P . These constraints come from the second
term of (5.7).

∫
∂Ω

(∑
i

riϕ
(l)
i + rϕ(l)

)
ϕ(k)pl = 0,

which can be written as

RP = 0. (5.10)

with

Rkl =



∫
∂Ω

(∑
i riϕ

(l)
i + rϕ(l)

)
ϕ(k) for l ≤ M

0 for M < l ≤ Mp.

We combine (5.9) and (5.10) to form a combined (M + Mp) × (M +
Mp) system [

A

R

]
P =
[
F

0

]
. (5.11)

Thus we solve (5.11) to obtain P . We report ψ̂ =
∑
plϕ

(l) as the solu-
tion. Moreover, we report the gradient as ∇ψ̂ =

∑
pl∇ϕ(l). Thus we

produce all the information that the moving-boundary method needs
to do its iterations.

6
Portfolio Optimization with Many Stocks

Although the transformation into a sequence of fixed-boundary prob-
lems provides an efficient way to solve such free-boundary problems, it
does involve the solution to fixed-boundary problems. When in a higher
dimensional setting, it therefore inherits all the difficulties of solving
PDEs in higher dimensions. In portfolio optimization problems like the
one considered in Section 4 the number of dimensions (independent
variables) in the free-boundary problem is equal to the number of risky
assets or stock. Since markets usually contain a large number of risky
assets, the solution to the portfolio optimization problem set in large
dimensions is of natural interest.

In this section, we demonstrate that it is possible to overcome the
challenges in higher dimensions, if one is willing to lower aspirations
slightly. To this end, we study a variant of the portfolio optimization
problem in Section 4. We lower our aspirations and look for the best
free-boundary in a class of boundaries that are easily parametrized.
Finally, we rely on simulation to obtain an estimate of the value func-
tion at certain points in the state space rather than solve the PDE in
the entire state space. This section suppresses several details that are

328

6.1 Problem Formulation and the Free-boundary Problem 329

unnecessary for illustrating the main idea. For a detailed discussion we
refer readers to [44], from which most of this section is taken.

The problem we consider here is again a continuous time portfolio
optimization problem with proportional transaction costs. However,
we ignore consumption control and choose the objective of maximiz-
ing long-term growth rate of the portfolio. Denoting the portfolio’s
total wealth over time as a stochastic process W (t), the objective is to
maximize

liminf
t→∞ E

{
logW (t)

t

}
. (6.1)

Ignoring consumption in the above objective will allow us to focus
on the singular transaction control and at the same time help us demon-
strate the handling of average cost objectives rather than discounted
objectives that we have always considered.

6.1 Problem Formulation and the Free-boundary Problem

We will consider the same market setup as in Section 4. That is,
a market with one risk-free asset and N risky assets modeled by a
multi-dimensional geometric Brownian motion. As in Section 4, letting
S0 ∈ R and S ∈ RN denote the wealth in the risk-free and risky asset,
respectively, we have,

dS0 = rS0 dt − (e + λl) · dL + (e − λu) · dU, (6.2)

dS = diag(S) [αdt + σdB] + dL − dU. (6.3)

The mean rates of return and the diffusion coefficient are α ∈
RN and σ ∈ RN×N . The two Ft-adapted RCLL processes L(t) and
U(t) model transactions and represent the cumulative amount of
money spent and earned in buying and selling the risky assets. The
transaction costs are given by λl = [λl1,λl2, . . . ,λlN]T ≥ 0 and λu =
[λu1,λu2, . . . ,λuN]T ≥ 0. In order to avoid the trivial case, we again
assume that

∑
i(λli + λui) > 0.

The investor’s objective is to choose a (L,U) so as to maximize
(6.1), where W denotes the total wealth in the portfolio, that is,

330 Portfolio Optimization with Many Stocks

S0 +
∑N

i=1Si. Say the expected cumulative cost up to time t when
the process X starts from x, can be represented by (td + V (x)). Here
V (x) is called the differential cost of starting at x or the differential
cost function and d is the average expected cost. Then E[logW (t)] can
be expanded as

E[logW (t)] = logW (0) + rt − (td + V (x)). (6.4)

Using which it can be argued that maximizing (6.1) is equivalent to
minimizing d. For a detailed discussion on this equivalence refer to
[3, 50].

Like in the previous examples considered, classical dynamic pro-
gramming arguments can then be used as in [50], to show that V (·),d
satisfies

min{LV (x),(BiV (x)|i = 1, . . . ,N) ,(SiV (x)|i = 1, . . . ,N)} = 0

(6.5)

where BiV (x) and SiV (x) are given by,

BiV (x) = λli

N∑
j=1

xj Vj + Vi + λli and

SiV (x) = λui

N∑
j=1

xj Vj − Vi + λui. (6.6)

The operator L is defined by,

LV (x) = ∇V ·
[
diag(x)(I − exT)(α − re − σσTx)

]
+

1
2

tr
{
D2V diag(x)(I − exT)σσT (I − xeT)diag(x)

}
+h(x) − d. (6.7)

The notations ∇V,D2V , and tr{·} denote the gradient of V , the
Hessian of V and the trace of a matrix, respectively. Again, as ear-
lier, for notational convenience we will write (6.5) as

min{LV (x), BiV (x), SiV (x)} = 0. (6.8)

6.2 A Policy Space Approximation 331

For uniqueness of the differential cost function we will further restrict
V (0) = 0. The existence and uniqueness of d as well as the characteri-
zation of the differential cost function, V , as the solution (in a viscosity
sense) to Equation (6.8) can be found in [2].

Note that in such problems with average cost objectives we seek as
solution V (·) and d, with the objective of minimizing d. In discounted
pay-off (or cost) objectives considered earlier the unknown was only
the value function V (·) that needed to be maximized. The superset
condition and the boundary update equation are essentially the same
as in Section 4, that is, (4.21) and (4.20). However, the definition of
operators B and S are in this case given by (6.6).

6.2 A Policy Space Approximation

In this section, we first discuss an appropriate policy space approx-
imation that will facilitate efficient scaling. Then we show how a
simulation based variant of the boundary update procedure can be
constructed.

A discretization of Ω, represented by a set Π, is a countably finite
set such that x ∈ Π implies x ∈ Ω. The simplest discretization scheme
would be to discretize each dimension of Ωn into P discrete points. This
would result in a set Π of size PN , that is, the number of elements in Π
grows exponentially. Moreover, the 2N boundaries that completely rep-
resent the optimal policy for the N -stock case are each hyper-surfaces.
Even the data structure that is required for the representation of a
general hyper surface grows exponentially with dimension. Thus, there
would be little hope of being able to construct a scheme that scales
polynomially with dimension with this discretization.

By restricting the no-transaction regions to polytopes in N -
dimensions, we can build a Π that grows polynomially in dimension.
No-transaction regions, though not polytopes in general, have been
shown to be very close to polytopes [43]. With this approximation we
can represent the no-transactions region by

AX ≥ C, (6.9)

332 Portfolio Optimization with Many Stocks

where

A =




1 ab
12 · · · ab

1N

...
...

...
...

ab
N1 ab

N2 · · · 1
−1 −as

12 · · · −as
1N

...
...

...
...

−as
N1 −as

N2 · · · −1




and C =




bb1
...
bbN
−bs1

...
−bsN



. (6.10)

The elements of A and C describe the buy and sell boundaries. The
ith stock’s buy and sell boundaries are given by

xi ≥ bbi −
∑

j=1...N,j 	=i

ab
ijxj and (6.11)

xi ≤ bsi −
∑

j=1...N,j 	=i

as
ijxj , (6.12)

respectively. Thus our search for the optimal policy becomes a search
for matrix A and vector C.

We first consider the two stock case (Figure 6.1) for the sake of easier
description and visualization. To construct Ωn+1 from Ωn, we require
the new boundaries bn+1

l1 , bn+1
l2 , bn+1

u1 , and bn+1
u2 . To move bnl1 to bn+1

l1 using
the boundary update Equation (4.20), we seek the local minimizer of
BV̂n. Here V̂n is a simulation estimate of Vn, details of which will follow
in the next section. Since the boundary bl1 is approximated by a straight
line we would only need two points where BV̂n is minimized in order
to determine bn+1

l1 . By discretizing the boundaries bnu2 and bnl2 by P

points each, we can obtain the estimate V̂n on the 2P points. However
since BV̂n depends on the gradient, we would need to estimate V̂ on
two more lines parallel to bnu2 and bnl2. Then we can use simple finite
differences for gradient estimation. Therefore, to update boundary bn+1

l1
and bn+1

u1 for the first stock, we only need to estimate the differential
cost function Vn for discretized points on four lines (4P points). We use
the estimates on these points to calculate the gradient on two lines (2P
points). We will call the lines on which we seek estimates of Vn as well
as its gradient as main lines and the lines on which we seek estimates of
Vn only to facilitate the calculation of the gradients on the main line as

6.3 Simulation Based Boundary Update 333

Fig. 6.1 Shape of the no-transaction region in 2-stock case.

auxiliary lines. Note that main lines and accompanying auxiliary lines
are parallel. These lines are also shown in Figure 6.1 for the 2 stock
case.

Now consider the general N -dimensional case. For a particular stock
i, the update of the buy i boundary and the sell i boundary requires
the estimation of V̂n on N2 lines. These N2 lines are in N groups of
N lines each. Each group has one main line and N − 1 auxiliary lines.
The gradient is estimated on the N main lines using the estimate of
V on all N2 lines using finite differences as in the two stock case. On
each of the N main lines, the boundary update condition (4.20) gives
1 buy point and 1 sell point. Fitting an N -dimensional hyper-plane
for the new buy(sell) boundary using the N new buy(sell) points is
straight forward. For each of the N stocks we do the same. This implies
that the estimation of V̂ needs to be done on N2 × N = N3 lines. The
discretization of these N3 lines comprises our discretization set Π. If
each line is discretized by P points then the size of Π is PN3, growing
polynomially in N .

6.3 Simulation Based Boundary Update

In the previous sections, for any fixed region Ωn we used PDE methods
to solve for V n. However in order to scale well with dimension, here we

334 Portfolio Optimization with Many Stocks

will use simulation to estimate the differential cost function V for only
a set of points in Ωn, but still rely on the boundary update equations
obtained by the PDE based arguments to improve policies. When we
use simulation we can only obtain estimates of V n rather than the
exact V n. Since we are dealing only with estimates in each iteration
we can no longer be assured that a boundary update based on the V n

estimates will yield a monotone sequence of boundaries and converge to
the optimal boundary. However by sequentially increasing the sample
paths used in the estimation and by relaxing the superset condition we
can construct a modified version of the update procedure that assure
convergence to the optimal boundary.

First, let us define some notations. Let Mn be an arbitrarily increas-
ing sequences of positive integers such that Mn → ∞. A discretization
of Ωn, as described in the previous section, will be represented by a set
Πn. Obviously Πn is countably finite such that x ∈ Πn implies x ∈ Ωn.
An estimate of V that uses Mn sample paths will be denoted by V̂Mn

n .
In step 1, we start the computation with a guess Ω0 and n = 0. For

a given Ωn, in step 2, using Mn sample paths we obtain an estimate
of V (x) (that is V̂Mn

n) for each x ∈ Πn. We use standard simulation
techniques for the estimations. Since V̂ is only an estimate of V , we
are not guaranteed that the Ωn’s obtained from update Equation (4.20)
always contains Ω∗. We need to check at each step if Ωn and V̂ n satisfy
(4.21), which we do in step 3.

If conditions (4.21) hold, we update the boundaries using (4.20). At
this stage, after an inward movement of the boundaries, we define two
sets of variables ∆bnli and ∆bnui by

∆bnli = a(bnli − bn−1
li) and (6.13)

∆bnui = a(bnui − bn−1
ui) (6.14)

for some a ∈ (0,1). Both ∆bnli and ∆bnui are recalculated only when a
boundary update is made using (4.20). Hence they can be interpreted
as a fraction a of the last inward movement of the boundaries. The
convergence of Ω∗ is checked after each inward movement and the iter-
ation is continued if not converged. Convergence can be checked by
either testing the convergence of d or Ωn.

6.3 Simulation Based Boundary Update 335

If any of conditions (4.21) fail, then it indicates that (under the
accuracy permitted by Mn sample paths) our Ωn has overshot inwards
due to estimation error and a backing out is necessary. We back out by
redefining Ωn. To this extent we first define Ωnew by

bnew
li = bnli − ∆bnli (6.15)

bnew
ui = bnui + ∆bnui. (6.16)

Upon consecutive backing out it is possible (though rarely) that Ωnew

(from (6.15) to (6.16)) is no longer a subset of the initial guess Ω0, in
which case we set Ωn = Ω0 otherwise we set Ωn = Ωnew. Note that, by
our assumption, Ω∗ is a subset of Ω0. Figure 6.2 shows a chart that
summarizes the computational scheme.

The idea behind using an increasing number of sample paths to
estimate V is to improve on the computational efficiency. Since during
the early stages of the iteration Ωn tends to be relatively further away
from Ω∗, the chances of over-shooting due to a cruder estimate of V
tends to be lower. Moreover, as Mn → ∞ the scheme itself converges
to the boundary update procedure with estimate V̂ converging to V .
Hence we can get arbitrarily close to the optimal Ω∗.

Fig. 6.2 The computational scheme flow.

336 Portfolio Optimization with Many Stocks

Though the computational scheme would work and converge for any
increasing sequences M and any a ∈ (0,1), the runtimes of the scheme
can greatly be reduced by prudently choosing these, like in many other
simulation based schemes like simulated annealing and retrospective
approximations. We have found that the following parameter choices
perform well and we also use these for all our computational results in
Section 6.4: Mn = M0n

1
2 with M0 = 200 and a = 0.3.

Table 6.1 Runtime data under two schemes.

N PDE Simulation
1 34 sec 4 mins
2 20 mins 58 mins
3 45 hrs 3.4 hrs
4 NA 8.6 hrs
5 NA 18.7 hrs
6 NA 36.6 hrs
7 NA 62.3 hrs

1 2 3 4 5 6 7

30 secs

1 min

10 mins

30 mins

1 hr

5 hrs

10 hrs

50 hrs

Dimension (log scale)

R
un

tim
e

(lo
g

sc
al

e)

Simulation runtime

Simulation trend

FEM runtime

Fig. 6.3 Computational runtime against dimension under two schemes.

6.4 Dimensionality and Scaling 337

6.4 Dimensionality and Scaling

In this section, we first demonstrate that the proposed scheme indeed
scales polynomially with dimension and compare it to the runtimes of
the scheme that uses FEM to solve for each Vn. The code is imple-
mented in Matlab and the runtimes are based on execution by a single
processor Pentium IV machine running at 3 Ghz with 1 GB RAM. We
consider a sequence of problems of increasing dimension. The first prob-
lem considers only one stock, the second problem considers two stock
and so on. For the sake of comparison we always consider independent
stock with αi = 0.14,σi = 0.3, λli = λui = 5% and r = 10%. Table 6.1
records the runtimes for each of these problems for both the PDE based
scheme and the proposed simulation based scheme. The “NA” (for “Not
Available”) indicates cases where very large runtimes made computa-
tions infeasible.

Figure 6.3 plots the logarithm of the runtimes against logarithm of
dimension, showing the nature of runtime scaling. Suppose the runtime
tr is a polynomial function of dimension N then log tr and logN should
have a linear relation. Figure 6.3 confirms a linear relation with a slope
of 3.4455, implying that tr(N) = CN3.4455 for some constant C.

References

[1] F. AitSahlia and P. Carr, “American options: A comparison of numerical meth-
ods,” in Numerical methods in finance, (L. C. G. Rogers and D. Talay, eds.),
pp. 67–87, Cambridge University Press, 1997.

[2] M. Akian, A. Sulem, and M. Taksar, “Dynamic optimization of long-term
growth rate for a portfolio with transaction costs and logarithmic utility,” Math-
ematical Finance, vol. 11, no. 2, pp. 153–188, 2001.

[3] J. A. Bather, “A Diffusion model for the control of a dam,” Journal of Applied
Probability, vol. 5, pp. 55–71, 1968.

[4] V. Benes, L. Shepp, and H. Witsenhausse, “Some solvable stochastic control
problems,” Stochastics, vol. 4, pp. 39–83, 1980.

[5] A. Bensoussan and J. Lions, Impulsive Control and Quasi-Variational Inequal-
ities. Dunod, 1982.

[6] F. Black and M. Scholes, “The pricing of options and corporate liabilities,”
Journal of Political Economy, vol. 81, no. 3, pp. 637–654, 1973.

[7] M. J. Brennan and E. S. Schwartz, “The valuation of American put options,”
Journal of Finance, vol. 32, no. 2, pp. 449–462, 1977.

[8] M. Broadie and J. Detemple, “American option valuation: Approximations,
and a comparison of existing methods,” Review of Financial Studies, vol. 9,
no. 4, pp. 1211–1250, 1996.

[9] M. Broadie and J. Detemple, “Option pricing: Valuation models and applica-
tions,” Management Science, vol. 50, no. 9, pp. 1145–1177, 2004.

[10] M. Broadie and P. Glasserman, “Pricing American-style securities by simu-
lation,” Journal of Economic Dynamics and Control, vol. 21, pp. 1323–1352,
1997.

338

References 339

[11] R. Caldentey and L. Wein, “Revenue management of a make-to-stock queue,”
Manufacturing and Service Operations Management, vol. 4, no. 1, 2002.

[12] P. Carr, R. Jarrow, and R. Myneni, “Alternative characterizations of American
put options,” Mathematical Finance, vol. 2, pp. 87–106, 1992.

[13] G. R. Courtadon, “A more accurate finite difference approximation for the
valuation of options,” Journal of Financial and Quantitative Analysis, vol. 17,
pp. 697–703, 1982.

[14] J. C. Cox, S. A. Ross, and M. Rubinstein, “Option pricing: A simplified
approach,” Journal of Financial Economics, vol. 7, pp. 229–263, 1979.

[15] M. Davis and A. Norman, “Portfolio selection with transaction costs,” Mathe-
matics of Operations Research, vol. 15, pp. 676–713, 1990.

[16] A. Dixit and R. Pindyck, Investment Under Uncertainty. Princeton University
Press, 1993.

[17] D. Duffie, Dynamic Asset Pricing Theory. Princeton University Press, Third
ed., 2001.

[18] H. Feng and K. Muthuraman, “A computational method for stochastic impulse
control problems,” Working Paper, 2008.

[19] H. Feng, K. Muthuraman, and V. Deshpande, “Replensihment policies for
multi-product stochastic inventory systems with correlated demand and joint-
replenishment costs,” Working Paper, 2008.

[20] W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity
Solutions. Springer, 1993.

[21] A. Friedman, Variational Principles and Free-Boundary Problems. Wiley, New
York, 1982.

[22] J. M. Harrison, “Brownian models of queueing networks with heterogeneous
customer populations,” Stochastic Differential Systems: Stochastic Control
Theory and Their Applications, IMA, vol. 10, pp. 147–186, 1988.

[23] J. Huang, M. Subrahmanyam, and G. Yu, “Pricing and hedging American
options: A recursive integration method,” Review of Financial Studies, vol. 9,
pp. 277–300, 1996.

[24] T. J. Hughes, Finite Element Method: Linear Static and Dynamic Analysis.
Prentice Hall, 1987.

[25] S. D. Jacka, “Optimal stopping and the American put,” Mathematical Finance,
vol. 1, pp. 1–14, 1991.

[26] N. Ju, “Pricing an American option by approximating its early exercise bound-
ary as a multipiece exponential function,” Review of Financial Studies, vol. 11,
no. 3, pp. 627–646, 1998.

[27] I. Karatzas and S. E. Shreve, Methods of Mathematical Finance. Springer-
Verlag, 1998.

[28] N. Keohane, N. V. Roy, and R. J. Zeckhauser, “Controlling stocks and flows to
promote quality: The environment, with applications to physical and human
capital,” NBER Working Paper, 2000.

[29] I. Kim, “The analytic valuation of American options,” Review of Financial
Studies, vol. 3, pp. 547–572, 1990.

[30] S. Kumar and K. Muthuraman, “A numerical method for solving stochastic
singular control problems,” Operations Research, vol. 52, no. 4, pp. 563–582,
2004.

340 References

[31] H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic Control
Problems in Continuous Time. Springer, 1992.

[32] H. J. Kushner and L. F. Martins, “Numerical methods for singular stochastic
control problems,” SIAM Journal of Control and Optimization, vol. 29, no. 6,
pp. 1443–1475, 1991.

[33] H. G. Landau, “Heat conduction in a melting solid,” Quarterly Applied Math-
ematics, vol. 8, p. 81, 1950.

[34] F. A. Longstaff and E. S. Schwartz, “Valuing American options by simula-
tion: Simple least-squares approach,” Review of Financial Studies, vol. 14,
pp. 113–147, 2001.

[35] D. Luenberger, Investement Science. Oxford University Press, 1998.
[36] M. J. P. Magill and G. M. Constantinides, “Portfolio selection with transaction

costs,” Journal of Economic Theory, vol. 13, pp. 245–263, 1976.
[37] R. McDonald and M. Schroder, “A parity result for American options,” Journal

of Computational Finance, vol. 1, pp. 5–13, 1998.
[38] H. P. McKean, “Appendix: A free boundary problem for the heat equation

arising from a problem in mathematical economics,” Industrial Management
Review, vol. 6, pp. 32–39, 1965.

[39] R. C. Merton, “Lifetime portfolio selection under uncertainty: The continu-
ous time case,” The Review of Economics and Statistics, vol. 51, pp. 247–257,
1969.

[40] P. L. J. V. Moerbeke, “On optimal stopping and free boundary problems,”
Archive for Rational Mechanics and Analysis, vol. 60, pp. 101–148, 1976.

[41] K. Muthuraman, “A computational scheme for optimal investment-
consumption with proportional transaction costs,” Journal of Economic
Dynamics and Control, vol. 31, no. 4, pp. 1132–1159, 2007.

[42] K. Muthuraman, “A moving boundary approach to American option pricing,”
Journal of Economic Dynamics and Control, 2008.

[43] K. Muthuraman and S. Kumar, “Multi-dimensional portfolio optimization
with proportional transaction costs,” Mathematical Finance, vol. 16, no. 2,
pp. 301–335, 2006.

[44] K. Muthuraman and H. Zha, “Simulation based portfolio optimization for
large portfolios with transaction costs,” Mathematical Finance, vol. 18, no. 1,
pp. 115–134, 2008.

[45] R. Myneni, “The pricing of the American option,” The Annals of Applied Prob-
ability, vol. 2, no. 1, pp. 1–23, 1992.

[46] B. F. Nielsen, O. Skavhaug, and A. Tveito, “Penalty and front-fixing meth-
ods for the numerical solution of American option problems,” The Journal of
Computational Finance, vol. 5, no. 4, pp. 69–97, 2002.

[47] J. T. Oden and J. N. Reddy, An Introduction to the Mathematical Theory of
Finite Elements. Academic Press, 1978.

[48] E. Schwartz, “The valuation of warrants: Implementing a new approach,” Jour-
nal of Financial Economics, vol. 4, pp. 79–93, 1977.

[49] S. E. Shreve and H. M. Soner, “Optimal investment and consumption with
transaction costs,” Annals of Applied Probability, vol. 4, no. 3, pp. 609–692,
1994.

References 341

[50] M. Taksar, M. J. Klass, and D. Assaf, “A diffusion model for optimal port-
folio selection in the presence of Brokerage fees,” Mathematics of Operations
Research, vol. 13, pp. 277–294, 1988.

[51] J. A. Tilley, “Valuing American options in a path simulation model,” Transac-
tions of the Society of Actuaries, vol. 45, pp. 83–104, 1993.

[52] L. Wu and Y. Kwok, “A front-fixing finite difference method for the valuation of
American options,” Journal of Financial Engineering, vol. 6, pp. 83–97, 1997.

[53] T. Zariphopolou, “Transaction costs in portfolio management and derivative
pricing,” Proceedings of Symposia in Applied Mathematics, vol. 57, pp. 101–163,
1999.

